Journal of Geo-information Science >
Remote Sensing Analysis of Environmental Changes in Mega Cities along the Maritime Silk Road
Online published: 2018-05-20
Supported by
National Natural Science Foundation of China, No.41471369;The Strategic Priority Research Program of the Chinese Academy of Sciences, No.XDA19030502; The International Partnership Program of Chinese Academy of Sciences, No.131C11KYSB20160061.
Copyright
With the rapid process of urbanization, it is very important for sustainable urban development that how to evaluate the changes of urban environmental quality in time and accurately, and thus make reasonable urban developmental plans. In this paper, the fine particulate matter (PM2.5) concentration data, land surface temperature (LST) data, normalized difference vegetation index (NDVI) data and supplementary information data of urban land use obtained by satellite remote sensing were obtained and synthetically used to assess the urban environment changes in mega cities along the Maritime Silk Road. The dynamic changes of urban environmental quality of 12 mega cities along the Maritime Silk Road were analyzed based on the comprehensive evaluation index (CEI) from 2000 to 2013. The results showed that, from 2000 to 2013, approximately 75 percent of the mega cities along the Maritime Silk Road showed different degrees of environmental deterioration. The area of environmental deterioration and moderately environmental deterioration accounted for 31.33 percent (4732.39 km2) of the total urban areas in the 12 mega cities. And 29.48 percent (3765.83 km2) of the total expanded urban areas from 2000 to 2013 exhibited environmental degradation or moderately environmental degradation. The rise of average land surface temperature, the sharp decrease of vegetation coverage and the increase of the fine particulate matter concentration all had an impact on the urban environmental quality changes of the mega cities along the Maritime Silk Road. Among them, the significant increase of the fine particulate matter (PM2.5) concentration in the air was one of the main manifestations for the environmental degradation of the expanded urban areas from 2000 to 2013 in mega cities along the Maritime Silk Road. These findings suggested that more attentions should be paid to urban environment issues to ensure sustainable urban development along the Maritime Silk Road.
FENG Suyun , ZHANG Kaixuan , LU Linlin . Remote Sensing Analysis of Environmental Changes in Mega Cities along the Maritime Silk Road[J]. Journal of Geo-information Science, 2018 , 20(5) : 602 -612 . DOI: 10.12082/dqxxkx.2018.180083
Fig. 1 Distribution of mega cities along the Maritime Silk Road图1 海上丝绸之路沿线超大城市分布图 |
Tab. 1 Population statistics of 12 mega cities表1 12个超大城市人口统计 |
城市 | 开罗 | 卡拉奇 | 德里 | 孟买 | 班加罗尔 | 加尔各答 |
---|---|---|---|---|---|---|
2000年城市人口/千人 | 13 626 | 10 032 | 15 732 | 16 367 | 5567 | 13 058 |
2016年城市人口/千人 | 19 128 | 17 121 | 26 454 | 21 357 | 10 456 | 14 980 |
年增长率/% | 2.1 | 3.3 | 3.2 | 1.7 | 3.9 | 0.9 |
城市 | 达卡 | 金奈 | 广州 | 深圳 | 马尼拉 | 雅加达 |
2000年城市人口/千人 | 10 285 | 6353 | 7330 | 6550 | 9962 | 8390 |
2016年城市人口/千人 | 18 237 | 10 163 | 13 070 | 10 828 | 13 131 | 10 483 |
年增长率/% | 3.6 | 2.9 | 3.6 | 3.1 | 1.7 | 1.4 |
Tab. 2 The remote sensing data used in this study表2 实验采用的遥感数据 |
数据 | 数据信息 | 空间分辨率 | 时段 | 数据来源 |
---|---|---|---|---|
PM2.5浓度分布 | MODIS+MISR+Sea WIFS传感器+GEOS-Chem传输模型 | 1 km | 2000-2013 | 达尔豪西大学大气成分分析组 |
地表温度数据 | MOD11A2 | 1 km | 2000-2013 | 美国国家航天太空总署 |
归一化植被指数 | SPOT/VGT 10-day composite | 1 km | 2000-2013 | 比利时弗拉芒技术研究院 |
全球建成区分布 | Landsat | 38 m | 2000,2014 | 欧盟联合研究中心 |
Tab. 3 Classification criteria for comprehensive evaluation indexes in study area表3 研究区域综合评价指标分类标准 |
类型 | |||||
---|---|---|---|---|---|
改善 | 逐步改善 | 未变 | 逐步恶化 | 恶化 | |
分类依据 | <u-1.5δ | u-1.5δ~u-0.5δ | u-0.5δ~u+0.5δ | u+0.5δ~u+1.5δ | >u+1.5δ |
综合评价指标 | <33.93 | 33.93~42.56 | 42.56~51.20 | 51.20~59.83 | >59.83 |
注:u,δ分别为12个超大城市地区环境质量综合评价指标(CEI)的均值和标准差 |
Fig. 2 The normalized variation of PM2.5 concentrations from 2000 to 2013 in 12 mega cities图2 12个超大城市2000-2013年PM2.5浓度归一化变化 |
Fig. 3 The normalized variation of LST from 2000 to 2013 in 12 mega cities图3 12个超大城市2000-2013年LST归一化变化 |
Fig. 4 The normalized variation of VC from 2000 to 2013 in 12 mega cities图4 12个超大城市2000-2013年VC归一化变化 |
Tab. 4 Environmental quality changes from 2000 to 2013 in 12 mega cities表4 12个超大城市用地环境质量变化 |
城市 | 2000年城市用地/km2 | 扩增 面积/km2 | 恶化 | 逐步恶化 | 未变 | 逐步改善 | 改善 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | |||||||
班加罗尔 | 235.26 | 368.57 | 27.53 | 4.56 | 361.27 | 59.83 | 196.11 | 32.48 | 18.92 | 3.13 | 0.00 | 0.00 | ||||
开罗 | 228.48 | 1098.38 | 0.00 | 0.00 | 0.00 | 0.00 | 49.11 | 3.70 | 1225.70 | 92.38 | 52.05 | 3.92 | ||||
金奈 | 44.56 | 254.85 | 0.00 | 0.00 | 5.23 | 1.75 | 184.26 | 61.54 | 57.58 | 19.23 | 52.34 | 17.48 | ||||
德里 | 249.07 | 1361.00 | 0.00 | 0.00 | 0.00 | 0.00 | 171.73 | 10.67 | 1405.58 | 87.30 | 32.76 | 2.03 | ||||
达卡 | 131.48 | 326.65 | 240.06 | 52.40 | 193.33 | 42.20 | 23.82 | 5.20 | 0.92 | 0.20 | 0.00 | 0.00 | ||||
广州 | 710.99 | 2591.42 | 237.56 | 7.19 | 1804.73 | 54.65 | 1110.82 | 33.64 | 130.52 | 3.95 | 18.78 | 0.57 | ||||
雅加达 | 148.56 | 2445.84 | 0.00 | 0.00 | 3.52 | 0.14 | 775.59 | 29.90 | 1565.27 | 60.33 | 250.02 | 9.63 | ||||
卡拉奇 | 64.31 | 410.15 | 0.00 | 0.00 | 0.00 | 0.00 | 173.94 | 36.66 | 286.99 | 60.49 | 13.53 | 2.85 | ||||
加尔各答 | 93.53 | 824.28 | 795.08 | 89.51 | 93.15 | 10.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
马尼拉 | 52.12 | 888.83 | 0.00 | 0.00 | 40.59 | 4.31 | 618.07 | 65.69 | 264.76 | 28.14 | 17.53 | 1.86 | ||||
孟买 | 32.56 | 504.72 | 0.00 | 0.00 | 60.23 | 11.21 | 388.14 | 72.24 | 57.36 | 10.68 | 31.55 | 5.87 | ||||
深圳 | 368.57 | 1698.49 | 30.92 | 1.50 | 839.19 | 40.60 | 954.03 | 46.15 | 199.64 | 9.66 | 43.28 | 2.09 |
Fig.5 Environmental quality changes from 2000 to 2013 in 12 mega cities图5 2000-2013年12个超大城市用地环境质量变化 |
Fig.6 Analysis of environmental quality changes from 2000 to 2013 in 12 mega cities图6 2000-2013年12个超大城市用地环境质量变化分析 |
Fig. 7 Analysis of environmental quality changes of expanded urban areas from 2000 to 2013 in 12 mega cities图7 2000-2013年12个超大城市扩张用地环境质量变化分析 |
Tab. 5 Correlation coefficients between normalized variation of VC, LST, PM2.5 concentration and CEI表5 VC、LST、PM2.5浓度归一化变化量与CEI之间的相关系数 |
CEI | ΔPM2.5 | ΔLST | ΔVC | |
---|---|---|---|---|
CEI | 1 | |||
ΔPM2.5 | 0.919** | 1 | ||
ΔLST | 0.453** | 0.143** | 1 | |
ΔVC | 0.290** | 0.202** | 0.006* | 1 |
注:**表示在0.01的置信水平上显著相关,*表示在0.05的置信水平上相关 |
Fig.8 Comparisons of ΔVC, ΔLST, ΔPM2.5 concentration of expanded urban areas in 12 mega cities图8 12个超大城市地区扩张用地ΔVC、ΔLST、ΔPM2.5浓度比较分析 |
The authors have declared that no competing interests exist.
[1] |
United Nations, Department of Economic and Social Affairs, Population Division. The world's cities in 2016: data booklet, 2016 [EB/OL]. .
|
[2] |
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
[
|
[11] |
|
[12] |
[
|
[13] |
Dewan,
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
[
|
[22] |
|
[23] |
|
[24] |
|
/
〈 | 〉 |