Spatio-temporal Analysis on Soil Erosion over Xuzhou City

  • CHEN Baozhang , 1, 2, * ,
  • QU Junfeng , 1, * ,
  • GE Mengyu 1 ,
  • SHEN Yanwen 1 ,
  • WANG Anni 1 ,
  • WANG Guobin 1
Expand
  • 1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
  • 2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
*Corresponding author: QU Junfeng, E-mail:

Received date: 2018-02-02

  Request revised date: 2018-08-08

  Online published: 2018-11-20

Supported by

Jiangsu Water Conservancy Science and Technology Project, No.2016067.

Copyright

《地球信息科学学报》编辑部 所有

Abstract

Based on the 3S techniques and the Revised Universal Soil Loss Equation (RUSLE), we analyzed the spatial and temporal variation in water loss and soil erosion since 2000 for the special topography of the Huangfan Plain-Hilly area in Xuzhou. The results show that between 2000 and 2014 over Xuzhou area, the area for the micro degree of soil erosion grade took account for 76.34%, the moderate degree took account for 10%~17% and the strong degree took account for the least proportion. The micro degree area happened usually in the neighborhood of the downstream of the surrounding area of the Weishan Lake, hilly down land of the Grand Canal, main urban area, the Yellow River flood plain of abandoned yellow river’s left bank and the local area of Fengxian, Xinyi and Pizhou every year. The annual changes in erosion area around Suining, Fengxian and Pizhou were more obvious than the other areas and the total area of soil erosion was declining in general.

Cite this article

CHEN Baozhang , QU Junfeng , GE Mengyu , SHEN Yanwen , WANG Anni , WANG Guobin . Spatio-temporal Analysis on Soil Erosion over Xuzhou City[J]. Journal of Geo-information Science, 2018 , 20(11) : 1622 -1630 . DOI: 10.12082/dqxxkx.2018.180091

1 引言

水土流失不仅对区域农业生产和生态环境安全造成损害,而且影响到整个社会经济可持续发展[1,2],《全国水土流失规划》多次明确强调在水土流失监测中应注重采用遥感和地理信息系统等技术结合地面观测和抽样调查方法对水土流失重点预防区和治理区进行监测,综合评价区域水土流失强度和分布状况、治理措施动态变化[3]
遥感和GIS技术的出现,使得以通用土壤侵蚀方程(USLE)[4]、修订土壤侵蚀方程(RUSLE)[5]、水蚀预报模型(WEPP)[6],以及水土流失定量遥感监测模型(QRSM)[7]等为代表的水土流失定量模型大范围应用成为可能。国内外研究工作者开展了大量相关工作。在我国西北黄土高原等水土流失重点区域,黄河水利委员会、中国科学院等单位近年来先后开展了一系列基于3S(RS,GIS和GPS)技术的黄土高原水土流失监测和生态效益评价项目,取得了较好的效益[8,9,10]。Terranova等[11]采用RUSLE和GIS定量分析评价了位于地中海的Calabria地区的土壤侵蚀状况,为当地政府及规划部门提供了决策依据;Park等[12]依据RUSLE的原理对韩国境内流域20年间的土壤侵蚀状况进行风险评估,发现其年均土壤侵蚀模数逐渐增加,并且到2020年该地的侵蚀模数将会进一步增大,蔡崇法等依据实地调查资料建立了典型小流域地理数据库确定了USLE模型指标因子在小流域尺度进行了土壤侵蚀量计算[13], 张磊等[14]在采用遥感和USLE模型,综合考虑影响水土流失的自然因素和人为因素,对江苏省太湖流域水土流失强度分布进行了定量评价。但至今基于3S技术及空间分析方法研究区域水土流失多年时空变化的案例仍然少见。
截止目前,徐州市缺乏对水土流失时空动态状况的了解,也没有开展对水土保持工程项目的评估研究。本研究利用遥感数据、结合地面调查观测资料,发展基于遥感和GIS的水土流失定量监测和水土保持措施效益定量评估方法,定量估算了徐州市2000-2014年公里网格尺度水土流失动态变化状况,并分析了其时空变化规律,对今后水土流失治理政策和生态环境建设决策的制定提供了科学依据。

2 研究区概况与数据源

2.1 研究区概况

徐州市位于东经116°22′~118°40′,北纬33°43′~34°58′之间,地处江苏省西北部地区、华北平原东南部,长江三角洲北翼,北倚微山湖,西连萧县,东临连云港,南接宿迁,素有“五省通衢”之称。全市总面积11 258 km2,下辖2市(新沂、邳州)、3县(丰县、沛县、睢宁县)、5区(云龙、鼓楼、泉山、铜山、贾汪),总人口有1023.52万人[15]。徐州属暖温带半湿润季风气候,四季分明,夏季雨量充沛,冬季干燥少雨,光照充足,雨热同期,气候资源较为优越,地处古淮河的支流沂、沭、泗诸水的下游,以黄河故道为分水岭,形成北部的沂、沭、泗水系和南部的濉河、安河水系。地形地貌类型多样,平原、低山、丘陵和岗地并存,地形起伏较小,域内除中部和东部存在少数丘岗外,大部皆为平原,丘陵山地分两大群,一群分布于市域中部,山体高低不一,另一群分布于市域东部,平原总地势由西北向东南降低。辖区内土壤以棕壤、褐土为主,蓄水条件较差,植被覆盖度相对较低,是江苏省水土流失重点防治区和平原沙土防护区[16,17,18]。2015年徐州水土流失总面积达到811.52 km2,其中,丘陵山区流失面积为534.52 km2,黄泛平原沙土区流失面积达到277.00 km2;当前徐州水土流失面积占总面积的7.21%,其中,轻度水土流失占总流失面积的69.88%,中度占18.42%,强度占8.62%,极强度占2.9%,剧烈占0.18%[15]。从引起水土流失的外营力分析,水土流失以水力侵蚀为主,平均土壤侵蚀模数为200 t/(km²·a)。2000年来,徐州市山区、丘陵区水土流失治理,以小流域为单元,采取了工程措施与植物措施、坡面治理与沟道治理、田间工程与保护性耕作相结合的办法,建立了水土流失综合防护体系。平原沙土区水土流失治理,以村镇河道为单元,采取了沟、河、渠堤坡工程防护与植被防护等措施,建立了水土流失综合防护体系。城市市区水土流失治理,以生态措施为主,采取植树、种草、固坡和雨水蓄渗、雨水洪水利用等措施,恢复和提高了生态系统功能,减轻了水土流失,防止河道淤积。同时强化水土保持监督执法,水土保持工作步入法制化道路。

2.2 数据源

本研究中所使用的数据包括降雨数据、土壤数据、地形数据、遥感数据和土地利用类型数据,其中,降雨数据为徐州市水文局提供的2000年1月1日以来分布于徐州地区的13个站点的日降雨量数据,站点包括双沟、睢宁、新店、高流、贾汪、邳城闸、运河、新楼、宋楼、安国、五段、郑集、徐州市区。土壤数据来源于世界土壤数据库(HWSD),该数据库由联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)联合编制,其中国境内的数据源为南京土壤所提供的我国第二次土壤调查1:100万数据(HWSD_China_Geo)[19];地形数据为ASTGTM2 DEM数据,空间分辨率为30米;土地覆被数据从中国科学院资源环境科学数据中心获得[20],其分类标准为刘纪远等建立的LUCC分类标准、空间分辨率1 km、每5年一套数据[21];植被覆盖数据来源于寒区旱区科学数据中心SPOT_VEGETATION数据集中的NDVI数据,空间分辨率为1 km[22],部分时间段的缺失,由MODIS数据产品补充[23]

3 研究方法及数据分析

3.1 RUSLE模型

美国通用水土流失方程USLE全面考虑了影响水土流失状况的自然和人文因素,选取包括降雨侵蚀力因子、土壤可侵蚀因子、坡度坡长因子、植被覆盖因子和水保措施因子在内的五大因子作为定量评价土壤侵蚀的参数,具有较强的适用性。针对徐州黄泛平原-丘陵岗地区水土流失类型主要为水蚀的特征,本研究在卜兆宏等修订的RUSLE模型[24]的基础上,选择适当的水土流失因子计算方法,进而发展一种适用于徐州的基于遥感观测的水流失定量监测方法。水土流失遥感定量监测模型结构如下:
A = R K S L C P (1)
式中:A为土壤年流失量/(t/hm2·a);R为降雨侵蚀因子/((MJ·mm)/(hm2·h·a)),K为土壤可蚀性因子/((t·hm2·h)/(MJ·mm·hm2));SL分别为地形坡度和坡长因子(无量纲);CP分别为地表植被覆盖度因子(无量纲)和水土保持措施因子(无量纲)。

3.2 水土流失因子提取

3.2.1 降雨侵蚀因子R
Wischmeier等[25]在1985年首次提出了降雨侵蚀因子R的经典算法,但由于降雨过程资料获取难度较大,考虑到气象数据资料和监测模型的适用性,本研究采用章文波等[26]2002年提出的采用日降雨量计算降雨侵蚀力的简易模型:
R 半月 = α k = 1 m ( P k ) β (2)
式中:R半月为某半月时段的降雨侵蚀力值(MJ·mm/(hm2·h)),Pk为半月时段内、第K天的日降雨量(Pk≥12 mm,否则按照0计算),不同监测站点的模型参数αβ根据日降雨量资料按如下公式估算:
β = 0.8363 + 18.144 P ( d 12 ) + 24.455 P ( y 12 ) (3)
α = 21.586 β - 7.1891 (4)
式中:Pd12)大于12 mm日平均降雨量;Py12)是日雨量大于等于12 mm的年平均雨量。
基于覆盖徐州地区的13个水文降雨监测站和6个气象站(图1)的日降雨量数据,根据上述降雨侵蚀因子计算方法,分别计算出每个站点每年每半月降雨侵蚀因子,并累加得出该站点的年降雨侵蚀因子R,最后将结果导入到ArcGIS软件中,运用克里金插值(Kriging)方法获得降雨侵蚀因子的空间分布结果,图2为以2000、2005、2010和2014年为例的年降雨侵蚀因子分布图。由图2可看出,徐州东南部的睢宁县多年平均降雨侵蚀力因子数值较大,而西北部的丰县和沛县,多年平均降雨侵蚀力因子数值较小,整体变化趋势是从东南向西北逐渐递减。
Fig.1 Distribution of hydrological rainfall monitoring station and national weather station in Xuzhou city

图1 徐州市水文降雨监测站和国家气象站站点分布

Fig. 2 Spatial distribution map of rainfall erosion factor in typical years of Xuzhou city

图2 徐州市典型年份降雨侵蚀因子空间分布图

3.2.2 土壤可侵蚀因子K
土壤可侵蚀因子K是评价土壤被降雨侵蚀力(R)分离、冲蚀和搬运难易程度的指标,土壤越难以被侵蚀,则K值越大,反之则越小。K值的大小主要取决于土粒和水的亲和力、土粒之间的胶结力等。模型中采用Sharply和Williams发展的EPIC模型计算土壤可侵蚀性因子K[27],并将结果进行修订,使之更符合我国土壤特性:
K EPIC = 0.2 + 0.3 exp 0.0256 SAN 1 - SIL / 100 SIL CLA + SIL 0.3 1.0 - 0.25 C C + exp 3.72 - 2.95 C 1.0 - 0.7 S N 1 S N 1 + exp - 5.51 + 22.9 S N 1 (5)
修订公式为:
K = - 0.01383 + 0.51575 K EPIC (6)
式中:K为土壤可侵蚀因子/(t/(hm2·h));SANSILCLAC分别为土壤中砂粒、粉粒、粘粒和有机碳含量所占百分比/%;SN1=1-SAN/100。
从根据修订的EPIC模型所获得的土壤可侵蚀因子K空间分布图(图3)可看出,位于徐州市西北部的丰县土壤可侵蚀因子的值相对较大,而位于徐州市中东部的邳州市可侵蚀因子相对较小。
Fig. 3 Spatial distribution map of soil erosion factors in Xuzhou city

图3 徐州市土壤侵蚀因子空间分布图

3.2.3 地形因子LS
徐州地形起伏较小,最大坡度小于30°,坡度因子的分布范围在0.036~9.6之间。坡度因子S(无量纲)和坡长因子L(无量纲)是反映地形地貌对水土流失影响的指标,在流域尺度上,可以根据区域数字高程模型DEM进行估算[28],公式如下:
S = 10.8 sin θ + 0.03                       θ < 5 ° S = 16.8 sin θ - 0.05          5 ° θ < 14 ° S = 21.91 sin θ - 0.96                 14 ° θ (7)
L = λ 22.13 α (8)
α = β / ( ( 1 + β ) ) (9)
β = sin θ / 0.089 / 3.0 sin θ 0.8 + 0.56 (10)
式中:θ为DEM提取的坡度值;λ为DEM提取的坡长,22.1为22.1 m标准小区坡长,α为坡度坡长指数。
基于ASTGTM2 DEM数据计算获得的徐州市地形坡度空间分布和地形因子(坡度坡长因子LS)如图4所示。LS因子的取值范围为0.036~16.71,大部分集中在0.036~0.5之间,LS高值区位于铜山和贾汪的丘陵岗地带,东部的邳州市和新沂市以及西部的丰县与沛县、东南的睢宁地区地形主要以平原为主,坡度坡长因子也较小,地形因素对水土流失的影响也相对较小。
Fig. 4 Spatial distribution map of LS factor in Xuzhou city

图4 徐州市LS因子空间分布图

3.2.4 植被覆盖因子C
本文中根据归一化植被指数(NDVI)估算植被覆盖因子C,估算公式为:
FVC = NDVI - NDV I min NDV I max - NDV I min (11)
C = 1 0.6508 - 0.3436 log FVC 0 0 FVC < 0.1 % 0.1 % FVC < 78.3 % FVC 78.3 % (12)
式中:NDVImaxNDVImin分别指研究区域内NDVI的最大值和最小值,FVC为植被覆盖度,C为植被覆盖因子(无量纲)。
以2000、2005、2010和2014年为例,研究区植被覆盖因子C分布图5所示。从图5可以看出,植被覆盖度空间分布差异性大、年际变化大,尤其2005年,由于受气候等因素影响,植被破坏比较严重、植被覆盖度低。
Fig. 5 Spatial distribution map of vegetation cover factors in typical years of Xuzhou city

图5 徐州市典型年份植被覆盖因子空间分布图

3.3.5 水土保持因子P
水土保持因子是指在顺坡耕地区域,采取的不同的水土保持措施与未采取水土保持措施的区域之间,水土流失量的比值。对于因子P的计算目前尚无定量公式,一般选取经验值,其变化处于0-1之间,0代表水土保持措施完善基本上不发生侵蚀的地区,1代表没有采取任何控制措施或顺坡种植的地区。确定P值大小的依据通常采用如下2种方法:①根据不同水土保持措施确定P值,通常选取自然植被区和坡耕地的P因子值为1,凡修了水平梯田的为0.01,解译二者中间的治理措施的坡耕地则取值介于0.02-0.7之间;②根据不同的土地利用类型来选取,选取标准如表1所示。
Tab.1 P values of different land use types

表1 不同土地利用类型P值

土地利用类型 P值 土地利用类型 P值
水田 0.01 裸岩 0
旱地 p 覆盖度>50草地 1
林地 1 其他草地 0.7
疏林地 1 水域 0
其他林地 0.7 居民点 0
滩地 0 建设用地 0

注:当s<5°时,p=0.1;当5°≤s<10°时,p=0.221;当10°≤s<15°时,p=0.305;当15°≤s<20°时,p=0.575;当20°≤s<25°时,p=0.705;当s≥25°时,p=0.8,其中,s为坡度

本文在ArcMap中,利用DEM提取的地形坡度数据与土地利用类型数据进行叠加分析,获得具有地形特征的土地利用类型数据。然后,以地形坡度为参考因子,按照上述的赋值标准对不同的土地利用类型进行赋值,得到水土保持措施因子栅格图。以2000年和2005年为例的结果如图6所示。徐州大部分地区水土保持措施较为完善,P值等于1的区域主要分布在中部的微山湖下游、铜山区和贾汪区的丘陵岗地地区,以及新沂的新沭河西岸的部分区域。P值的其他取值呈现点状、面状散落分布于整个徐州地区。
Fig. 6 Spatial distribution map of soil and water conservation factors in typical years of Xuzhou city

图6 徐州市典型年份水土保持因子空间分布图

4 结果与讨论

4.1 通用水土流失方程(USLE)本地化矫正

通用水土流失方程(USLE)是依据美国试验小区的研究资料研制出的,由于研究区土壤条件、气候因素等具有其独特性,因此在应用该模型时,应对讨论起在研究区的适应性、根据观测和其他数据对模型进行矫正。本研究采用来源于江苏省水文水资源勘测局(http://www.jssw.gov.cn/)的徐州市2004年的水土流失定量监测数据对USLE模型进行校准。在时空尺度匹配后,对观测数据与模型计算的结果进行线性回归分析得出回归方程为:Obs=1.6339Mod+3.8154,其中Mod为未修正之前的土壤侵蚀模数,Obs为水土流失监测数据对应的土壤侵蚀模数,相关系数R=0.86,显著性参数P<0.001。假定USLE在其他年份存在相同的系统误差,因此本文采用这个回归方程矫正模型计算结果。

4.2 侵蚀强度空间分布特征分析

基于通用水土流失方程,通过ArcGIS软件,对上述提取的各土壤侵蚀因子进行叠加分析,计算出徐州市像元尺度土壤侵蚀模数,获得徐州土壤侵蚀状况动态空间分布图。根据我国水利部颁发的《土壤侵蚀分类标准》(SL190-2007),将研究区土壤侵蚀强度分为微度、轻度、中度、强度、极强度和剧烈6个不同的等级,形成研究区域内土壤侵蚀强度分级分布图,以2000、2005、2010和2014年为例的结果如图7所示。
Fig. 7 Spatial distribution map of soil erosion grade in typical years of Xuzhou city

图7 徐州市典型年份土壤侵蚀等级空间分布图

从2000-2014年土壤侵蚀模数分布图来看,徐州市土壤侵蚀强度等级以微度为主,其他侵蚀强度等级所占面积较少,主要集中在中部地区和东西部的丰县(2005年较为明显)、新沂、邳州的局部区域,其中,丰县等级为微度及以上的土壤侵蚀现象只发生在2005年,其他年份几乎未发生。研究区土壤侵蚀空间分布呈带状、片状、点状交叠分布的特征,黄河故道区域主要呈现带状分布特征。徐州市土壤侵蚀强度等级在微度及以上的侵蚀现象发生的空间位置变化不大,以2005年为例把土壤侵蚀强度等级图与河网空间分布图叠加(图7)可以看出,在中北部地区,轻度及以上等级主要分布在微山湖下游的铜山区与贾汪区的交界处,京杭大运河的北面,从地形地貌上来看,该区域属于淮北丘陵岗地貌类型;中南部地区,轻度及以上等级的土壤侵蚀零散地出现在徐州市的中心城区,其他则主要沿着故黄河北岸呈现带状分布,在水土保持规划上,这一区域属于徐州黄泛平原类。

4.3 侵蚀面积变化特征分析

在土壤侵蚀类型分区上,徐州市属于东北漫岗丘陵以南、黄土高原以东、淮河以北的北方土石山丘。该区域为水力类型区,容许土壤流失量为 200(t/km2·a),故不将侵蚀模数小于200的微度侵蚀区作为发生侵蚀的面积统计中。根据2000-2014年土壤侵蚀模数结果和分类结果,对不同侵蚀强度等级的土壤侵蚀面积进行统计分析,并绘制不同年份不同侵蚀强度等级面积占总侵蚀面积百分比图表,如表2所示。
Tab. 2 Statistical table of different soil erosion grade area and proportion in Xuzhou City from 2000 to 2014

表2 2000-2014年徐州市不同土壤侵蚀强度等级面积与所占比例统计表

年份 轻度 中度 强度 极强度 剧烈
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
2000 251.685 71.72 51.007 14.54 22.447 6.40 22.897 6.52 2.878 0.82
2001 278.526 80.22 40.052 11.53 20.671 5.95 7.453 2.15 0.522 0.15
2002 267.817 81.59 36.709 11.18 18.561 5.65 5.068 1.54 0.080 0.02
2003 306.114 72.25 58.555 13.82 24.594 5.80 29.016 6.85 5.423 1.28
2004 83.902 66.11 20.497 16.15 12.696 10.00 9.447 7.44 0.377 0.30
2005 379.213 74.02 63.761 12.45 28.335 5.53 31.191 6.09 9.788 1.91
2006 108.866 73.85 19.127 12.97 12.906 8.75 6.264 4.25 0.261 0.18
2007 168.254 68.77 37.514 15.33 19.475 7.96 17.292 7.07 2.117 0.87
2008 342.229 75.84 57.097 12.65 23.085 5.12 25.413 5.63 3.415 0.76
2009 163.831 77.94 24.229 11.53 15.135 7.20 6.773 3.22 0.232 0.11
2010 221.519 78.59 33.222 11.79 19.446 6.90 7.490 2.66 0.203 0.07
2011 278.889 81.55 36.882 10.78 20.899 6.11 5.272 1.54 0.058 0.02
2012 281.206 82.86 36.226 10.67 17.852 5.26 4.068 1.20 0.022 0.01
2013 153.229 77.31 24.791 12.51 15.546 7.84 4.597 2.32 0.051 0.03
2014 284.657 82.48 37.204 10.78 18.714 5.42 4.532 1.31 0.029 0.01
平均 237.996 76.34 38.458 12.58 19.357 6.66 12.451 3.99 1.697 0.45
标准差 85.408 5.14 13.829 1.71% 4.287 1.43% 9.842 2.37 2.765 0.57
变率/% 35.89 6.73 35.96 13.59 22.15 21.47 79.05 59.40 162.93 126.67
2000-2014年多年平均轻度以上等级侵蚀面积为310 km2,其中轻度、强度、极强度和剧烈等级面积分别为238、38.5、19.4、12.5和1.7 km2。徐州土壤侵蚀强度等级以轻度为主,占总土壤侵蚀面积的比例每年均高于60%,多年平均百分比达到76.34%;中度侵蚀次之,占总侵蚀面积百分比在10%~17%之间,剧烈等级所占比例最少。从年际变化上来看,各等级侵蚀面积年际变化较小。2003年和2005年2个丰水年,由于汛期侵蚀性降雨较多,导致发生剧烈侵蚀的百分比和其他年份相比具有较为明显的不同。由于2005年降雨量极为丰富,汛期连降暴雨,湖西丰沛地区、中运河(京杭运河中段)、骆马湖出现了较大洪水,年平均降雨量达到1126.6 mm,汛期6-9月平均降雨量为929.7 mm,导致降雨侵蚀力因子最大值达到11 568.4 MJ·mm/(hm2·h·a),加之植被覆盖度较低,2005年土壤侵蚀面积为2000-2014年,是这15年中的最大值。
轻度、中度、强度、极强度、剧烈五个侵蚀等级的侵蚀面积与总侵蚀面积存在较好的相关关系:轻度侵蚀面积与总侵蚀面积的相关系数最大,达到0.98,中度和强度为0.94,剧烈为0.69,极强度最小,为0.64,且轻度侵蚀面积年际变化较为明显,由此可以推断出,轻度土壤侵蚀面积的变化决定了土壤总侵蚀面积的变化,具有侵蚀性的土壤面积与非侵蚀性的土壤面积之间的转换,主要发生在轻度侵蚀与非侵蚀或微度侵蚀(侵蚀模数小于200 t/km2·a)之间。

5 结论与展望

在3S技术的支持下,基于2000-2014年徐州地区降雨、遥感、DEM、土地利用类型等气象资料和地形地貌数据,提取了1 km网格尺度水土流失主要侵蚀因子,并对各因子进行叠加分析;采用矫正后的通用土壤流失方程(USLE)计算了多年1 km网格尺度徐州土壤侵蚀模数结果,进而分析其时空动态分布特征。结论如下:
(1)徐州市土壤侵蚀等级以微度为主,轻度及以上土壤侵蚀等级主要发生在中部地区和丰县、新沂、邳州的局部区域,相对集中地分布在中北部的微山湖下游和京杭大运河一带的丘陵岗地地区和中南部的徐州主城区与故黄河北岸的黄泛平原地区。
(2)2000-2014年,徐州市轻度及以上土壤侵蚀等级的空间分布年际变化不大。睢宁县、丰县和邳州的部分地区,侵蚀面积年际变化较为明显,其他区域年际变化较小;徐州市发生轻度及以上土壤侵蚀等级存在一定的年际变化,2005年土壤侵蚀面积最大而2004年土壤侵蚀面积最小;侵蚀总面积整体上呈现下降趋势。
(3)基于遥感影像和侵蚀方程估算的网格化土壤侵蚀模数结果需要实测侵蚀强度数据验证,因此,在今后的研究中,应在研究区域内随机选择下垫面类型和侵蚀强度等级区域开展水土流失观测、获取研究区水文站径流含砂量观测数据,经过尺度转换后,采用实测数据对侵蚀方程RUSLE进行本地参数化以及对估算结果进行验证分析与精度评估。

The authors have declared that no competing interests exist.

[1]
张瑞斌,何君,王艳艳,等.江苏省水土流失综合治理研究及效益分析[J]. 江苏农业科学, 2009(3):421-423.简述江苏省水土流失现状及危害,分丘陵山区、平原沙土区、生产建设项目3个方面对水土流失综合治理的措施进行了分析,并对措施实施的效益进行了分析。

DOI

[ Zhang R B, He J, Wang Y Y, et al.Study on comprehensive control of soil and water loss and its benefit analysis in Jiangsu Province[J]. Jiangsu Agricultural Sciences, 2009(3):421-423. ]

[2]
朱友银,丛小祥,周岩,等.江苏省平原河网地区水土流失及防治措施体系构建[J]. 中国水土保持, 2012(10):45-47.江苏省平原河网地区水土流失较轻,但造成的危害和损失严重,目前区内水土流失防治管理薄弱,防治技术缺乏针对性。在介绍区内水土流失防治概况、水土流失特点与危害、水土保持措施设计及实施过程中常见不足的基础上,提出了“提高认识,调整政策,全面覆盖建设项目;因地制宜,突出重点,强调表土保护,防止河道和雨水管道淤积;强化水土保持工程与主体工程同步管理;贯彻水土保持法,明确职责,强化监督”的水保措施体系构建设想。

DOI

[ Zhu Y Y, Cong X X, Zhou Y, et al.Soil and water loss and construction of prevention measures system in plain river network area of Jiangsu province[J]. Soil and Water Conservation in China, 2012(10):45-47 ]

[3]
全国水土保持规划(2015-2030年)[R].水利部,2015.

[ National Soil and Water Conservation Plan(2015-2030 )[R].Ministry of Water Resources, 2015. ]

[4]
Renard K G, Foster G R, Weesies G A, et al.Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss equation (RUSLE)[J]. Agriculture Handbook,1997.The book provides guidelines for the selection of the best control methods for farms, ranches and other erosion-prone areas throughout USA. The prediction of soil loss founded on the Universal Soil Loss Equation (USLE) is revised using information available on monthly precipitation and temperature, front-free period, annual rain erosivity, below ground biomass, canopy cover and height at 15 days intervals, and soil cover disturbances associated with farming operations. The information is available on CITY, CROP and OPERATION...

[5]
Laflen J M, Lane L J, Foster G R.A new generation of erosion prediction technology[J]. Journal of Soil & Water Conservation, 1991,46(1):34-38.WEPP is a computer model for predicting soil erosion and sediment delivery from fields, farms, forests, rangelands, construction sites and urban areas. It embodies the fundamental concept that erosion was a process of detachment and transport. Soil erosion is modeled as rill and interrill erosion processes. The sediment delivery is modeled in the watershed routines in WEPP with channels and impoundments on and leading from fields. The watershed routines estimate detachment and deposition in channels and impoundments. Channels may include grassed waterways, other small channels on fields, or road ditches. Impoundments may be small reservoirs, impoundment terraces, small pondage areas above culverts, or water ponded above silt fences or straw bales. WEPP is available on the internet, and is supported by a maintenance team. Efforts are underway to produce a comprehensive interface that will meet users needs. Additionally, WEPP has been thoroughly tested on plots and watersheds, and is being implemented by the U.S. Forest Service. Future efforts will be directed toward further implementation, commonality of interfaces and science with other ARS erosion models, and enhancements as needed.

[6]
卜兆宏,刘绍清.土壤流失量及其参数实测的新方法[J].土壤学报,1995,32(2):210-220.本文介绍的新方法,由八个实测项目和措施组成,具有简便、直观和省钱的特点。经南北方各地的实测结果表明,它有着为常规法远所不及的适应性和实用性,又有与常规法同等的准确性。这使它能够获得为建立流失量监测模型或修正USLE因子算式所需的大量实测数据,作为实现县、省级土壤年流失量遥感监测的基础。新方法的实测结果还表明,植被或作物的有无,严重影响着流失量的大小,特别是红壤区。

[ Pu Z H, Liu S Q.A new method for measuring soil and its parameters[J]. Acta Pedologica Sinica, 1995,32(2):210-220 ]

[7]
卜兆宏,孙金庄.水土流失定量遥感方法及其应用的研究[J]. 土壤学报, 1997(3):235-245.A quantitative method of remote sensing for soil erosion is described in this paper. Although form of the model for monitoring losses in the method is the same as the USLE and RUSLE, the formula and algorithms for model factors are generated from loss data observed in our country. Therefore, it is more applicable to loss regions in our country, and suits personal computer proccssing of the GIS and remote sensing data. The results of its application which include the total loss of region, the area of soil loss grades, the soil erosion map and the forecast map of soil conservation, are more accuracy and useful than those of existing methods for the conventional survey and qualitative remote sensing.

DOI

[ Pu Z H, Sun J Z.Study on quantitative remote sensing method of soil and water loss and its application[J]. Acta Pedologica Sinica, 1997(3):235-245 ]

[8]
王鸿斌,翟然,刘晓静,等.皇甫川流域水土流失动态监测研究[J]. 人民黄河, 2014(9):92-94.以皇甫川流域为研究区域,基于不同时期的数字航摄影像,运用ArcGIS软件,通过目视解译和综合判定分别提取2006年、2011年水土保持措施、植被覆盖度和土壤侵蚀数据,确定其转移矩阵,分析皇甫川流域水土保持措施、植被覆盖度及土壤侵蚀强度动态变化情况。结果表明:5 a来,皇甫川流域水土保持措施净变化量为78 km2,占流域总面积的2.40%,变化顺序为未成林>灌木>沟台地>乔木林;各级植被覆盖度净变化面积为33 km2,占流域总面积的1.02%,变化顺序为低覆盖>中低覆盖>中覆盖;各级土壤侵蚀强度净变化面积为60 km2,占流域总面积的1.85%,沟蚀变化较小,面蚀变化顺序为中度>强烈>微度>轻度>极强烈>剧烈。

DOI

[ Wang H B, Zai R, Liu X J, et al.Cause analysis of recent sediment reduction in telagou small watershed of Huangfuchuan basin[J]. YELLOW RIVER, 2014(9):92-94]

[9]
赵业婷,常庆瑞,李志鹏,等.黄土高原沟壑区耕地土壤速效养分空间特征及丰缺状况研究-以陕西省富县为例[J]. 土壤通报, 2012(6):1438-1443.研究旨在揭示黄土高原沟壑区耕地土壤速效养分的空间变异特征和分布状况,为土壤培肥和农业生 产提供理论基础。采用富县2009年测土配方施肥项目实测的0~20 cm耕层土壤速效氮、钾、磷数据,运用地统计学结合GIS技术方法,建立养分最佳半方差函数,进行插值分析和丰缺分析。在平均间距为1214 m的采样尺度下,速效养分最优理论模型均为指数模型且具有各向异性特征,速效磷、钾表现为中等空间相关性,速效氮表现为弱空间相关性。养分含量高低区域分 布明显,大致成西高东北低的态势,施肥、田间耕作、地形地貌和降水等是影响其空间变异的主要因素。总体上该地区富钾,氮和磷缺乏,农业耕作中针对不同作物 应积极制定"增氮补磷"措施,并关注土壤钾的消耗。

[ Zhao Y T, Chang Q R, Li Z P, et al.Spatial characteristics and abundance of available nutrients in cultivated soils in the gully region of the Loess Plateau: A case study of Fuxian Countru,Shaanxi Province[J]. Chinese Journal of Soil Science, 2012(6):1438-1443. ]

[10]
徐钊,孙晓楠,刘晓,等.遥感影像在罗玉沟流域下垫面调查中的应用[J]. 中国水土保持, 2015(12):79-81.

[ Xu Z, Sun X N, Liu X, et al.Application of remote sensing image in the investigation of underlying surface in Luoyugou Watershed[J]. Soil and Water Conservation in China, 2015(12):79-81. ]

[11]
Terranova O, Antronico L, Coscarelli R, et al.Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy)[J]. Geomorphology, 2009,112(3-4):228-245.Soil erosion by water (WSE) has become a relevant issue at the Mediterranean level. In particular, natural conditions and human impact have made the Calabria (southern Italy) particularly prone to intense WSE. The purpose of this investigation is to identify areas highly affected by WSE in Calabria by comparing the scenarios obtained by assuming control and preventive measures and actions, as well as actual conditions generated by forest fires, also in the presence of conditions of maximum rainfall erosion. Geographic Information System techniques have been adopted to treat data of reasonable spatial resolution obtained at a regional scale for application to the RUSLE model. This work is based on the comparison of such data with a basic scenario that has been defined by the present situation (present scenario). In this scenario: (i) R has been assessed by means of an experimental relation adjusted to Calabria on the basis of 5-min observations; (ii) K has been drawn from the soil map of Calabria including 160 soilscapes; (iii) LS has been estimated according to the RUSLE2 model by using (among other subfactors) a 40-m square cell DTM; (iv) C has been derived by processing the data inferred from the project Corine Land Cover, whose legend includes 35 different land uses on three levels; and (v) P has been hypothesized as equal to 1. For the remaining three hypothesized scenarios, the RUSLE factors have been adjusted according to experimental data and to data in the literature. In particular, forest areas subject to fire have been randomly generated as far as fire location, extension, structure, and intensity are concerned. The values obtained by the application of the RUSLE model have emphasized that land management by means of measures and actions for reducing WSE causes a notable reduction of the erosive rate decreasing from ~30 to 12.3 Mg ha 61 1 y 61 1. On the other hand, variations induced by hypothetical wildfires in forests on 10% of the regional territory bring WSE over the whole region to values varying from 30 to 116 Mg ha 61 1 y 61 1. This study can be offered to territorial planning authorities as an evaluation instrument as it highlights the merits and limitations of some territorial management actions. In fact, in Calabria no observations exist concerning the implications of these actions.

DOI

[12]
Park S, Oh C, Jeon S, et al.Soil erosion risk in Korean watersheds,assessed using the revised universal soil loss equation[J]. Journal of Hydrology, 2011,399(3):263-273.Soil erosion reduces crop productivity and water storage capacity, and, both directly and indirectly, causes water pollution. Loss of soil has become a problem worldwide, and as concerns about the environment grow, active research has begun regarding soil erosion and soil-preservation policies. This study analyzed the amount of soil loss in South Korea over a recent 20-year period and estimated future soil loss in 2020 using the revised universal soil loss equation (RUSLE). Digital elevation (DEM) data, detailed soil maps, and land cover maps were used as primary data, and geographic information system (GIS) and remote sensing (RS) techniques were applied to produce thematic maps, based on RUSLE factors. Using the frequency ratio (FR), analytic hierarchy process (AHP), and logistic regression (LR) approaches, land suitability index (LSI) maps were developed for 2020, considering the already established Environmental Conservation Value Assessment Map (ECVAM) for Korea. Assuming a similar urban growth trend and 10-, 50-, and 100-year rainfall frequencies, soil loss in 2020 was predicted by analyzing changes in the cover-management factor and rainfall–runoff erosivity factor. In the period 1985–2005, soil loss showed an increasing trend, from 17.1 Mg/ha in 1985 to 17.4 Mg/ha in 1995, and to 20.0 Mg/ha in 2005; the 2005 value represents a 2.8 Mg/ha (16.6%) increase, compared with 1985 and is attributable to the increased area of grassland and bare land. In 2020, the estimated soil loss, considering the ECVAM, was 19.2–19.3 Mg/ha for the 10-year rainfall frequency, 36.4–36.6 Mg/ha for the 50-year rainfall frequency, and 45.7–46.0 Mg/ha for the 100-year rainfall frequency. Without considering the ECVAM, the amount of soil loss was about 0.4–1.6 Mg/ha larger than estimates that did consider the ECVAM; specifically, the values were 19.6–19.9 Mg/ha for the 10-year rainfall frequency, 37.1–37.8 Mg/ha for the 50-year frequency, and 46.7–47.5 Mg/ha for the 100-year frequency. In 2010, without considering the ECVAM, the soil loss was 0.3–1.8 Mg/ha more than that estimated when considering the ECVAM. These results indicate that if urban areas are developed such that they damage areas of high value, as defined environmentally and legislatively, the amount of soil loss will increase, whereas if such areas are preserved, erosion will decrease slightly. Thus, when planning urban development, the environmental and legislative value of preservation should be considered to minimize erosion and allow for more sustainable development.

DOI

[13]
蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.依据实地调查资料 ,建立了典型小流域地理数据库 ;应用径流小区观测结果 ,确定了定量计算通用土壤流失方程 USL E因子指标的方法。在地理信息系统 IDRISI支持下 ,根据USLE土壤侵蚀预测模型对数据库实施运算操作 ,预测了小流域土壤侵蚀量。结果表明 ,占流域面积 6 7%的区域土壤侵蚀微弱或轻度 ,这一区域对流域土壤侵蚀量的贡献率仅为 3% ,而流域 80 %的泥沙来自于占流域面积仅 2 0 %的极强度和剧烈侵蚀区域

DOI

[ Cai C F, Ding S W, Shi Z H, et al.Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 2000,14(2):19-24. ]

[14]
张磊,孟亚利.基于GIS的江苏省太湖流域水土流失评价[J].江西农业学报,2009,21(6):129-132.

[ Zhang L, Meng Y L.Evaluation of water and soil loss in Taihu Basin of Jiangsu Province based on GIS[J]. Acta Agriculturae Jiangxi, 2009,21(6):129-132 ]

[15]
江苏省水土保持规划(2015-2030年)[R].江苏省水利厅,2015.

[ Jiangsu Province Soil and Water Conservation Plan(2015-2030)[R]. Jiangsu Provincial Water Resources Department, 2015. ]

[16]
金兆森,陶涛.江苏省平原沙土地区水土保持措施及其作用[J].水土保持研究,2005,12(5):119-121.江苏省是一个以平原地区为主的省份,有2万多km2平原沙土区.江苏省一直把平原沙土区作为水土流失严重地区,加以重点治理.针对暴雨是造成水土流失的主要因素,砂性土质是引起水土流失的基本因素,因地制宜地推广应用有效的工程与生物措施,治理与开发相结合,治理与生态建设相结合,取得了较为显著的成效.

DOI

[ Jin Z S, Tao T.Measures and effects to soil and water conservation on Plain-sand areas in Jiangsu Province[J]. Research of Soil and Water Conservation, 2005,12(5):119-121. ]

[17]
钱学智. 徐州地区开发建设项目水土流失监测探讨[J]. 治淮, 2008(8):44-45.正一、概述1、水文气象特性徐州属暖温带半湿润季风气候区。夏季炎热,雨水充沛,多发暴雨,多年平均降水量860.0mm,年内分配不均匀,主要集中在汛期,汛期(6-9月降水量占全年降水量的比值在80%-90%之间。

DOI

[ Qian X Z.Discussion on soil and water loss monitoring of Xuzhou area development and construction Project[J]. Journal of Huaihe River, 2008(8):44-45]

[18]
邹碧莹,丁美,籍春蕾,等.江苏省丘陵山区及平原沙土区水土流失综合治理及效益评估研究[J].水土保持通报,2012,32(1):156-160.通过近期重点工程规划实例分析江苏省水土流失综合治理措施及其效益,以期为今后的水保规划和综合治理提供借鉴。通过分析江苏省水土流失现状及特点,建立丘陵山区以小流域为单元的山、水、田、林、路综合治理措施体系,平原沙土区以小区域为单元的河、沟、堤、田、林、路综合治理措施体系,并规划各分区重点工程措施分布及工程量;在此基础上,进一步构建水土保持效益评价的指标体系及相应计算模型,进行规划措施的生态、经济、社会效益测算与分析。结果表明,全部措施生效当年可减蚀土壤1.38×106 t,拦蓄水1.27×108 m3;规划实施期末累计经济效益总额5 059.05万元,农民人均增收552.18元,效益显著。

[ Zou B Y, Ding M, Ji C L, et al.Assessment of comprehensive soil and water loss control and its benefits in Hilly area and sandy plain area of Jiangsu Province[J]. Bulletin of Soil and Water Conservation, 2012,32(1):156-160. ]

[19]
史学正,于东升,高鹏,等.中国土壤信息系统(SISChina)及其应用基础研究[J].土壤,2007,39(3):329-333.土壤是人类赖以生存和发展的物质基础,是陆地生态系统的核心,为了在全球尺度、国家尺度和区域尺度上解决资源、环境和生态的有关问题,就必须要建立土壤信息系统。本文首先全面系统地介绍了国内外有关土壤信息系统的研究进展,阐述了中国土壤信息系统建设的数据源、土壤空间数据和属性数据、包含土壤空间与属性数据融合的中国1:100万土壤数据库及其应用基础,这对了解中国土壤信息系统的发展趋势,更好地利用土壤资源,为农业生产和生态环境建设服务具有重要的现实意义。

DOI

[ Shi X Z, Yu D S, Gao P, et al.Soil information system of china(SISChina) and its application[J].Soil, 2007,39(3):329-333.

[20]
Resource and Environment Data Cloud Platform.Land use and land cover 1km Grid based on Landsat-8 visual interpretation[EB/OL].[2017-1-1]. .

[21]
刘纪远,张增祥,庄大方,等.20世纪90年代中国土地利用变化的遥感时空信息研究[M].北京:科学出版社,2005:15-18.

[ Liu J Y, Zhang Z X, Zhuang D F, et al.Remote sensing spatio-temporal information of land use change in China in the 1990s[M]. Beijing: Science Press, 2005:15-18. ]

[22]
The data set is provided by cold and arid regions sciences data center at Lanzhou. SPOT_Vegetation Indices 16-Day Global 1km SIN Grid[EB/OL]. [2017-5-4]. .

[23]
The Land Processes Distributed Active Archive Center. MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid[EB/OL].[2017-6-8]. .

[24]
卜兆宏,唐万龙,杨林章,等.水土流失定量遥感方法新进展及其在太湖流域的应用[J].土壤学报,2003,40(1):1-9.

[ Pu Z H, Tang W L, Yang L Z, et al.New Progress in Quantitative Remote Sensing Methods for Soil Erosion and Its Application in the Taihu Basin[J]. Acta Pedologica Sinica, 2003,40(1):1-9. ]

[25]
Wischmeier W H.Use and misuse of the universal soil loss equation[J]. Journal of Soil & Water Conservation,1976,31(5-6):554-559.

[26]
章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.Rainfall erosivity shows the potential ability of the soil loss caused by rainfall and it is very important for predicting soil loss quantitatively. A rainfall erosivity model using daily rainfall amounts to estimate half-month rainfall erosivity directly was established from data of 71 weather stations in China. The average coefficient of determination for all stations was 0.718 and the average relative error estimating the annual average rainfall erosivity was 4.2%. Both parameters of α and β in the model were different in different regions. The parameter α was high correlative with parameter β and parameter β was related to rainfall characteristics, so both parameters could be estimated by using rainfall indexes. With the set of parameter values estimated by using rainfall indexs,the average coefficient of determination decreased to 0.697 and the average relative error estimating the annual average rainfall erosivity increased to 17.3%. The model worked very well in the regions where the rainfall was abundant and the result was on the low side when extreme storm erosivty was estimated. The daily rainfall erosivity model could be used to estimate the annual average rainfall erosivity and its seasonal distribution.

DOI

[ Zhang W B, Xie Y, Liu Y B.Study on the method of calculating rainfall erosivity using daily rainfall[J]. Scientia Geographica Sinica, 2002,22(6):705-711. ]

[27]
Sharpley A N,Williams J R.EPIC-erosion/productivity impact calculator:1 model documentation.[J]. Technical Bulletin - United States Department of Agriculture,1990,4(4):206-207.

[28]
陈学兄. 基于遥感与GIS的中国水土流失定量评价[D].西安:西北农林科技大学,2013.

[ Chen X X.Quantitative Evaluation of Soil and Water Loss in China Based on Remote Sensing and GIS[D]. Xi'an:Northwest A&F University,2013 ]

Outlines

/