Journal of Geo-information Science >
The Variations and Causes of Grassland Distribution in Kazakhstan from the Global Land Cover Datasets
Received date: 2018-10-13
Request revised date: 2018-12-13
Online published: 2019-03-15
Supported by
The Strategic Priority Research Program of the Chinese Academy of Sciences, No.XDA20010202
National Key Research and Development Program of China, No.2016YFC0503700.
Copyright
Affected by social institutional transformation and climate change, Kazakhstan is the most significant country with ecological degradation and grass-livestock contradiction in Central Asia. Over the past century, the distinct characteristics of various grassland ecosystems have changed due to agricultural reclamation, changes in grazing patterns, and climate change in Kazakhstan. Therefore, it is important to study the process and mechanisms of grassland degradation in Kazakhstan in order to understand the responses of grassland ecosystems to climate change and human activities in Central Asia. These findings may also support regional ecological sustainable development in the construction of green silk roads. Ecological change research is based on the land cover statistics. However, there are significant differences between the current widely-used global data sets, leading to uncertainty in the understanding of ecological variation and the simulation of future change. This study compared the similarities and differences of grassland distribution using five types of global land cover data (UMD 1992-1993, MCD12Q1 2001, GLC 2000, CCI-LC 2000, Glob Cover 2005). Grassland type identification, consistency of spatial distribution and the cause of spatial distribution variation were used to provide the basis for selection of land cover datasets in Kazakhstan. Results showed that: ① the primary cause of differences in grassland definitions were differing remote sensing data sources, ancillary data, classification methods, verification methods, and data within the five data sets. The MCD12Q1 data had the largest difference in grassland distribution area; ② the area of grassland distribution overlaps within the five data sets (complete consistency) or within the four data sets (high consistency) accounted for only 39.66% of the total, which were mainly located in the typical grassland and part of the semi-desert grassland. The spatial consistency gradually decreased from the inside to the outside around the typical grassland distribution zone. An inconsistent zone within the five data sets accounted for 26.78%, mainly located in the desert grassland; ③ CCI-LC2000 data had the highest areas of overlap compared to other types of data. There were 76% of the grassland overlapped with areas of complete consistency or high consistency in the five data sets. In the inconsistent areas, the most easily confused land cover types were mainly rainfed cropland, irrigated cropland, mosaic cropland and natural vegetation, bare areas and shrub land.
LAI Chenxi , YAN Huimin , DU Wenpeng , HU Yunfeng . The Variations and Causes of Grassland Distribution in Kazakhstan from the Global Land Cover Datasets[J]. Journal of Geo-information Science, 2019 , 21(3) : 372 -383 . DOI: 10.12082/dqxxkx.2019.180518
Fig. 1 Ecological geographical regionalization in Kazakhstan图1 哈萨克斯坦生态分区[17] |
Tab. 1 Basic information of five cover datasets表1 5套土地覆被数据集基本信息 |
数据 | 空间分辨率/m | 分类 体系 | 数据源时段 | 数据源 传感器 | 分类方法 | 输入数据和辅助数据 | 数据精度/% | 数据精度 验证方法 |
---|---|---|---|---|---|---|---|---|
UMD① | 1000 | IGBP 14类 | 1992-04 1993-03 | AVHRR | 将全球作为整体进行分类;采用监督分类树分类(水体与城镇掩膜去除),分类树输出的叶子节点中所有像元赋值为占比最大的类别 | 水体数据:MODIS传感器制作的水体掩膜;城镇数据:IGBP DIS Cover数据集的城镇数据;1992-04至1993-03中AVHRR的5个波段和NDVI组成的41个规则矩阵;辅助选取样本数据主要是 Landsat MSS影像解译得到 | 65.00 | 与其它区域数字数据集比较法进行验证(如美国的MRLC和欧洲的CEC等) |
MCD12Q1② | 500 | IGBP 17类 | 2001 | MODIS | 将全球作为整体进行分类;采用集成监督分类算法,其基本算法是决策树,使用boosting估计集成分类,对集成决策树的结果进行后处理 | 将整年Terra和Aqua数据的1~7波段的光谱和时间信息作为输入数据,并补充EVI数据,训练样本数据包括地球陆地上的1860个站点数据;辅助选取样本数据主要是 Landsat TM影像 | 78.30 | 基于90%的随机训练样本数据,采用交叉验证方法来验证精度 |
GLC③ | 1000 | LCCS 22类 | 1999- 2000 | SPOT4 Vegetation | 将全球分为19个区进行单独分类;采用非监督分类的ISODATA算法进行分类 | 中亚地区,将每月合成的NDVI数据作为输入;采用的样本数据主要是实地调查、Landsat影像解译、SPOT/ Vegetation和AVHRR数据的物候信息、现有土地利用或植被地图以及专家知识 | 68.60 | 结合已有相关数据进行对比验证精度及修正;采用置信度-统计抽样法 |
CCI-LC④ | 300 | LCCS 22类 | 1998- 2002 | MERIS和SPOT Vegetation | 将全球分为22个气候区进行分类;首先基于2003-2012年MERIS FR和RR数据,利用添加机器学习法改进的Glob Cover 非监督分类链和结合监督分类技术,生成为期10年的2003-2012年全球土地覆被图,然后基于SPOT VGT时间序列的回溯和更新技术得出2010、2005和2000年地图 | 基于空间分辨率300 m的MERIS FR影像以及MERIS RR数据(用于补偿某些地区缺乏MERIS FR);逐日的空间分辨率为1000 m的SPOT VEGETATION数据,并将1998-2002年用于扩大时间覆盖范围 | 74.10 | 验证数据(欧洲外)由18位专家参与收集并进行精度验证,欧洲部分采用Glob Cover 2009的验证数据进行验证;采用抽样标记法验证 |
Glob Cover⑤ | 300 | LCCS 22类 | 2004-12 2006-06 | ENVISA/MIRIS | 将全球分为22个气候区进行分类;水体进行掩膜后,监督分类提取湿地和城镇,非监督分类的多维聚类分类其它类型,并自动赋值为LCCS分类系统 | 2004-12至2006-06的300m空间分辨率的13个光谱波段;其中水体数据由ENVIASAT卫星携带的MERIS传感器自带的水/路边界进行掩膜得到,并结合SRTM得到的水体数据进行改善,城镇则通过单独的监督分类进行提取 | 73.00 | 验证数据由16位专家参与收集,建立数据库进行验证;采用统计抽样进行专家判断 |
注:数据下载网址:① http://glcf.umd.edu/data/landcover/data.shtml;② https://lpdaac.usgs.gov/dataset_discovery/modis/ modis_ products_table/mcd12q1;③ http://forobs.jrc.ec.europa.eu/products/glc2000/products.php;④ http://maps.elie.ucl.ac.be/CCI/viewer/ index.php;⑤ http://due. Esrin.esa.int/page_globcover.php。 |
Tab. 2 Grassland definitions of five datasets表2 5套土地覆盖数据集草地定义 |
数据集 | 类型 | 定义描述 | 面积/万km2 |
---|---|---|---|
UMD1992-1993 | 草地 | 草地覆盖率>10% | 129.04 |
MCD12Q1 2001 | 草地 | 草地覆盖率>10% | 209.41 |
GLC2000 | 草地 | 草地覆盖率>15% | 16.73 |
稀疏草本或灌丛 | 稀疏草地或稀疏灌木覆盖率<15% | 89.65 | |
CCI-LC2000 | 草地 | 草地覆盖率>15% | 107.21 |
稀疏植被 | 树/灌丛/草地的覆盖率<15% | 0.66 | |
Glob Cover2005 | 草地 | 草本覆盖率>15% | 7.00 |
稀疏植被 | 乔木植被/灌丛/草地<15% | 89.59 |
Fig. 2 Spatial distribution of grassland in Kazakhstan derived from five global land cover datasets图2 从5套土地覆被数据中提取的哈萨克斯坦草地空间分布 |
Tab. 3 Grassland distribution consistency ratio表3 草地分布一致性占比 |
类型 | 面积/(万km2) | 百分比/% |
---|---|---|
完全一致(C5) | 43.59 | 19.30 |
高度一致(C4) | 45.98 | 20.36 |
基本一致(C3) | 35.35 | 15.66 |
低度一致(C2) | 40.43 | 17.90 |
完全不一致(C1) | 60.48 | 26.78 |
Fig. 3 Distribution consistency of grassland within the five global land cover datasets图3 5套土地覆盖数据集草地分布一致性 |
Tab. 4 Overlap of grassland distribution in the five land cover datasets and CCHC (%)表4 5套土地覆盖数据集中草地分布与CCHC的重叠度 |
UMD1992-1993 | MCD12Q1 2001 | GLC2000 | CCI-LC2000 | GlobCover2005 | |
---|---|---|---|---|---|
CCHC | 59 | 42 | 64 | 76 | 58 |
Fig. 4 Confusion analysis of CCI-LC2000 and four land cover datasets图4 CCI-LC2000与4套土地覆盖数据集类型混淆分析 |
Tab. 5 CCI-LC2000 and four land cover datasets of inconsistent area type statistics表5 CCI-LC2000和4套土地覆盖数据集不一致的区域类型统计 |
CCI-LC2000/ UMD1992-1993 | CCI-LC2000/ MCD12Q1 2001 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCI-LC2000 不一致类型 | 面积/万km2 | 百分比/% | UMD1992-1993 不一致类型 | 面积/万km2 | 百分比/% | CCI-LC2000 不一致类型 | 面积/万km2 | 百分比/% | MCD12Q1 2001 不一致类型 | 面积/万km2 | 百分比/% |
旱作耕地 | 8.61 | 14.68 | 多树草原 | 1.11 | 1.89 | 旱作耕地 | 12.15 | 10.51 | 耕地 | 6.34 | 5.48 |
灌溉耕地 | 4.03 | 6.87 | 灌丛 | 7.03 | 11.99 | 灌溉耕地 | 6.71 | 5.80 | 其他类型 | 0.87 | 0.75 |
裸地 | 24.68 | 42.08 | 耕地 | 10.14 | 17.29 | 自然植被和耕地镶嵌体 | 1.36 | 1.18 | |||
其他类型 | 2.53 | 4.31 | 其他类型 | 0.52 | 0.89 | 裸地 | 85.39 | 73.85 | |||
其他类型 | 2.81 | 2.43 | |||||||||
CCI-LC2000/ GLC2000 | CCI-LC2000/ Glob Cover 2005 | ||||||||||
CCI-LC2000 不一致类型 | 面积/万km2 | 百分比/% | GLC2000 不一致类型 | 面积/万km2 | 百分比/% | CCI-LC2000 不一致类型 | 面积/万km2 | 百分比/% | GlobCover2005 不一致类型 | 面积/万km2 | 百分比/% |
旱作耕地 | 4.71 | 8.54 | 耕地 | 10.05 | 18.22 | 旱作耕地 | 4.44 | 5.26 | 旱作耕地 | 5.37 | 6.36 |
灌溉耕地 | 4.39 | 7.96 | 耕地、草地和灌丛镶嵌体 | 3.46 | 6.27 | 灌溉耕地 | 2.00 | 2.37 | 耕地和自然植被镶嵌体 | 30.05 | 35.61 |
裸地 | 15.17 | 27.50 | 裸地 | 14.43 | 26.16 | 裸地 | 20.13 | 23.87 | 裸地 | 19.29 | 22.86 |
其他类型 | 2.32 | 4.20 | 其他类型 | 0.64 | 1.15 | 其他类型 | 1.30 | 1.54 | 其他类型 | 1.80 | 2.13 |
注:CCI-LC2000不一致类型:CCI-LC2000为非草地,而与之比较的为草地;反之CCI-LC为草地,与之比较的为非草地。 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
[
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
|
[18] |
[
|
[19] |
[
|
[20] |
|
[21] |
[
|
[22] |
|
[23] |
|
[24] |
[
|
[25] |
[
|
[26] |
[
|
[27] |
|
[28] |
[
|
[29] |
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
[
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
/
〈 | 〉 |