Journal of Geo-information Science >
Spatiotemporal Distribution of the Snowfall in Shandong Peninsula
Received date: 2019-02-11
Request revised date: 2019-05-27
Online published: 2019-12-11
Supported by
National Natural Science Foundation of China(No.41271342)
Shandong Province Higher Education Science and Technology Projects(J12LH01)
Copyright
Snow accumulation is an important freshwater resource to alleviate the current situation of water stress; however, disasters may also happen when there is too much snow. Therefore, snowfall must be monitored. To extract the strong snowfall areas, a snow distribution model was constructed in this paper. MODIS products (MOD10A1) in the past 20 years from 2000 to 2018 were used as the main input data, and the digital elevation model (DEM) of Shandong Peninsula and meteorological data(e.g., precipitation and wind direction) were used as the auxiliary data. The model worked well in distinguishing strong and weak snowfall areas in Shandong Peninsula. Based on the snow covers information that was extracted by the snow distribution model, the spatiotemporal distribution characteristics were statistically analyzed. We found: (1) It can effectively construct the spatial distribution model of snow cover in Shandong Peninsula using the NDSI values accumulated over many years of snow and DEM data. and The boundary between strong and weak snowfall areas was successfully extracted using this model, and heavy snowfall areas covered 79.78% of the research area where the accumulated NDSI was above 150; (2) The spatial distribution of snow cover on the Shandong Peninsula is spatially uneven, which is generally characterized by rich snow on northeast and east, and less snow in south and west regions of Shandong Peninsula. There was more snow at the north side of mountains 150 m above sea level, and there was less snowfall in the south of mountains. Based on the boundary line between the Bohai Sea, Yellow Sea, and Shandong Peninsula, there was more snowfall within 39.1 km offshore distance. There was a correlation between snowfall areas and wind direction, and northerly winds were more likely to cause heavy snowfall. (3) The amount of snowfall in the Shandong Peninsula varied from 3 to 5 years in a cycle, there was a large snowfall every 3-5 years. But there was uncertainty in the snowfall areas, not all areas had strong snowfall. There was also a difference in the snowfall in each month, snowfall was mainly concentrated in December, and snowfall formed a small peak in late January of the following year. Our findings reveal the spatiotemporal distribution characteristics of long-term sequences and extraction methods of the snowfall in Shandong Peninsula, and indicate the cause of the snowfall. This study can helpin collecting fresh water resources and alleviating water stress and disaster prevention.
Key words: Shandong Peninsula; NDSI; snow distribution model; time and space distribution; MODIS; DEM
PANG Haiyang , KONG Xiangsheng , HE Zhengyang , SU Xiaoqiang . Spatiotemporal Distribution of the Snowfall in Shandong Peninsula[J]. Journal of Geo-information Science, 2019 , 21(11) : 1721 -1734 . DOI: 10.12082/dqxxkx.2019.190058
表1 MOD10A1编码及意义Tab. 1 Codes and meanings of the MOD10A1 data |
编码 | 地表类型及意义 |
---|---|
0~100 | 积雪 |
200 | 数据缺失 |
201 | 未定 |
211 | 夜晚 |
237 | 陆地水 |
239 | 海洋 |
250 | 云 |
254 | 传感器饱和 |
255 | 填充的数据 |
表2 2000-2018年山东半岛冬季逐旬年平均降雪次数Tab. 2 Summary of winter average snowfall count in every period of ten days in Shandong Peninsula from 2000 to 2018 |
站点 | 12月上旬 | 12月中旬 | 12月下旬 | 1月上旬 | 1月中旬 | 1月下旬 | 2月上旬 | 2月中旬 | 2月下旬 |
---|---|---|---|---|---|---|---|---|---|
长岛 | 2.22 | 1.61 | 1.72 | 1.33 | 1.17 | 1.28 | 1.33 | 0.56 | 1.06 |
龙口 | 2.22 | 1.28 | 1.89 | 1.39 | 1.22 | 1.11 | 1.17 | 0.78 | 1.11 |
福山 | 2.50 | 2.28 | 2.33 | 2.00 | 2.00 | 2.06 | 1.72 | 1.11 | 1.33 |
成山头 | 3.00 | 2.33 | 2.28 | 1.44 | 1.78 | 2.22 | 1.56 | 0.94 | 1.28 |
平度 | 1.50 | 0.89 | 1.50 | 0.89 | 0.83 | 1.00 | 1.22 | 1.11 | 1.06 |
青岛 | 1.44 | 0.78 | 1.28 | 0.94 | 0.83 | 0.83 | 1.56 | 1.06 | 1.56 |
海阳 | 1.33 | 0.83 | 1.06 | 0.72 | 0.83 | 1.06 | 1.44 | 0.67 | 0.89 |
威海 | 3.33 | 2.94 | 2.89 | 2.06 | 2.11 | 2.33 | 1.33 | 1.44 | 1.33 |
图12 山东半岛WS-EN走向积雪分布与站点风向玫瑰图Fig. 12 Distribution of snow along the WS-EN direction, and rose chart of wind direction in the weather stations in Shandong Peninsula |
图13 2000-2018年龙口气象站冬季降雪日主风向频数及NDSI累积量Fig. 13 Daily main wind direction frequency and accumulated NDSI for winter snowfall at Longkou Weather Station from 2000 to 2018 |
图14 山东半岛WN-ES走向积雪分布与站点风向玫瑰图Fig. 14 Distribution of snow along the WN-ES direction, and rose chart of wind direction in the weather stations in Shandong Peninsula |
图15 2000-2018年福山与威海气象站主风向风频及NDSI累积量Fig. 15 Daily main wind direction frequency and accumulated NDSI for winter snowfall at Fushan and Weihai Weather Station from 2000 to 2018 |
[1] |
莫兴国, 胡实, 卢洪健 , 等. GCM预测情景下中国21世纪干旱演变趋势分析[J]. 自然资源学报, 2018,33(7):1244-1256.
[
|
[2] |
周迪, 周丰年 . 中国水资源利用效率俱乐部趋同的检验、测度及解释:2003-2015年[J]. 自然资源学报, 2018,33(7):1103-1115.
[
|
[3] |
刘学刚, 张金艳, 郭丽娜 , 等. 青岛地区降雪时空特征及环流成因分析[J]. 中国农学通报, 2016,32(32):144-157.
[
|
[4] |
汪箫悦, 王思远, 尹航 , 等. 2002-2012年青藏高原积雪物候变化及其对气候的响应[J]. 地球信息科学学报, 2016,18(11):1573-1579.
[
|
[5] |
刘业森, 张晓蕾, 郭良 . 自然灾害调查数据的多尺度异常检测方法研究及应用[J]. 地球信息科学学报, 2017,19(12):1653-1660.
[
|
[6] |
杨成芳, 周雪松, 王业宏 . 山东半岛冷流降雪的气候特征及其前兆信号[J]. 气象, 2007,33(8):76-82.
[
|
[7] |
杨成芳, 李泽椿, 李静 , 等. 山东半岛一次持续性强冷流降雪过程的成因分析[J]. 高原气象, 2008,27(2):442-451.
[
|
[8] |
高晓梅, 杨成芳, 王世杰 , 等. 莱州湾冷流降雪的气候特征及其成因分析[J]. 气象科技, 2017,45(1):130-138.
[
|
[9] |
除多, 达珍, 拉巴卓玛 . 西藏高原积雪覆盖空间分布及地形影响[J]. 地球信息科学学报, 2017,19(5):635-645.
[
|
[10] |
姜萍, 王晓威 . 近红外波段ETM+影像的积雪提取方法[J]. 测绘科学, 2017,42(11):41-46.
[
|
[11] |
郑璞, 邓正栋, 关洪军 , 等. 基于ETM+的积雪提取方法研究——以新疆玛纳斯河流域为例[J]. 冰川冻土, 2014,36(5):1151-1159.
[
|
[12] |
王雪璐, 王玮, 冯琦胜 , 等. 基于MODIS数据的青海省积雪覆盖范围监测算法探索[J]. 草业学报, 2012,21(4):293-299.
[
|
[13] |
马荣, 张明军, 王圣杰 , 等. 近50 a西北干旱区冬季积雪日数变化特征[J]. 自然资源学报, 2018,33(1):127-138.
[
|
[14] |
|
[15] |
彦立利, 王建 . 基于遥感的冰川信息提取方法研究进展[J]. 冰川冻土, 2013,35(1):110-118.
[
|
[16] |
黄晓东, 张学通, 李霞 , 等. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J]. 冰川冻土, 2007,29(5):722-729.
[
|
[17] |
NASA官网[EB/OL].
[ NASA official website[EB/OL].
|
[18] |
国家气象信息中心[EB/OL].
[ National Meteorological Information Center[EB/OL].
|
[19] |
中国科学院计算机网络信息中心国际科学数据镜像网[EB/OL].
[ International Scientific Data Mirror Network of Computer Network Information Center of Chinese Academy of Sciences[EB/OL].
|
[20] |
美国喷气实验室网址[EB/OL]. .
[ The websiteof Jet Propulsion Labortatory[EB/OL].
|
[21] |
庞海洋, 孔祥生, 汪丽丽 , 等. ENDSI增强型雪指数提取积雪研究[J]. 国土资源遥感, 2018,( 1):63-71.
[
|
[22] |
|
[23] |
郝晓华, 王建, 李弘毅 . MODIS雪盖制图中NDSI阈值的检验——以祁连山中部山区为例[J]. 冰川冻土, 2008,30(1):132-138.
[
|
[24] |
蒋洪波, 秦其明, 张宁 , 等. 不同积雪深度与面积对积雪覆盖遥感反演的影响[J]. 光谱学与光谱分析, 2011,31(12):3342-3346.
[
|
[25] |
董廷旭, 蒋洪波, 陈超 , 等. 基于实测光谱分析的HJ-1B数据浅层雪深反演[J]. 光谱学与光谱分析, 2011,31(10):2784-2788.
[
|
[26] |
李建华, 崔宜少, 褚昭利 , 等. 山东半岛冷流降雪中心位置对比分析[J]. 气象与环境科学, 2012,35(S1):10-13.
[
|
[27] |
丁海燕, 马灵玲, 李子扬 , 等. 基于分形维数的全色影像云雪自动识别方法[J]. 遥感技术与应用, 2013,28(1):52-57.
[
|
/
〈 | 〉 |