Journal of Geo-information Science >
Analysis on Spatiotemporal Characteristics and Factors of Soil Erosion in Liupanshui City
Received date: 2018-09-05
Request revised date: 2019-09-25
Online published: 2019-12-11
Supported by
CAS Strategic Priority Research Program(XDA23100203)
National Key Research and Development Program of China(No.2017YFC0506501)
Copyright
Liupanshui is a city with very important ecological status and serious soil erosion in China. In recent years, Liupanshui has adopted a series of ecological construction projects, therefore, it is very important to quantitatively analyze soil erosion and its influencing factors. Based on the Revised Universal Soil Loss Equation (RUSLE) model and geographical detector method, we calculated the average soil erosion modulus of Liupanshui city during 1990-2015. We analyzed the changes of spatiotemporal patterns, and explored the quantitative analysis of the influencing factors of geographic detector, and spatial correlation analysis. Results show that: (1) The Average Soil Erosion Modulus (ASEM)of Liupanshui was 23.50 t·hm-2·a-1, with an average soil erosion amount of 1578.42×104 t·a-1. The micro and moderate erosion were the dominant erosion types, occupying 83.49% of the total area, while the strong and violent erosion accounted for only 5.3%. The strong erosion area in Liupanshui was mainly located at the junction of Beipanjiang River Basin and Nanpanjiang River Basin as well as the Karst areas with fragile eco-environment. (2) The ASEM was the largest in 2000, which increased by 5.50% compared with that in 1990. The ASEM in 2005 decreased by 18.2% compared with that in 2000. The ASEM in 2010 was the smallest, 11.4% lower than that in 2005. The ASEM in 2015 increased compared with that in 2010. The soil erosion intensity in Liupanshui city in 2000-2015 was weaker than that in 1990-2000. The area of violent erosion decreased, and the strong erosion shifted to micro, light and moderate erosion. (3) The vegetation coverage factor and the perennial average rainfall factor are important factors affecting the spatial distribution of regional soil erosion. Moreover, unused land, vegetation coverage less than 0.3, slope above 25° and rainfall between 1543~1593 mm are high-risk erosion areas. (4) Vegetation coverage and soil erosion have negative correlation in space, while rainfall factors have negative correlation and positive correlation in space. (5) Soil erosion improvement areas are mostly distributed in ecological engineering areas, so ecological engineering construction can improve soil erosion. Different ecological engineering protection priorities lead to different degree of soil erosion improvement. By simulating rainfall to calculate the soil erosion modulus and soil erosion amount before and after Grain-for-Green, it could be seen that the soil erosion situation in Liupanshui had improved after Grain-for-Green. Compared with cultivated land-forest land and cultivated land-grassland land use change area, Liupanshui city is more suitable to return cultivated land to forest. Implementation of the Grain-for-Green Project should be continued in Liupanshui city, and focus more on areas with complex topography and fragile eco-environment.
Key words: soil erosion; spatiotemporal variations; RUSLE model; Geodetector; Liupanshui
NIU Li'nan , SHAO Quanqin , LIU Guobo , TANG Yuzhi . Analysis on Spatiotemporal Characteristics and Factors of Soil Erosion in Liupanshui City[J]. Journal of Geo-information Science, 2019 , 21(11) : 1755 -1767 . DOI: 10.12082/dqxxkx.2019.180447
表1 六盘水市土壤侵蚀评价及分析数据Tab. 1 Principal data sources for soil erosion assessment in Liupanshui |
数据名称 | 数据来源 | 时段 | 数据说明 |
---|---|---|---|
中国地面气候资料日值数据集 | 国家气象信息中心 | 1951-2015 | 包括六盘水市及其周边31个国家气象站1951-2015年温度和日降雨量数据 |
土壤数据库 | 资源环境数据云平台 | 1990-2015 | 土壤质地砂砾、粉粒,有机碳含量等数据 |
ASTER GDEM数据产品 | 地理空间数据云 | 1990-2015 | DEM高程数据 |
Landsat4-5 TM | 地理空间数据云 | 1990-2010 | 遥感影像数据 |
Landsat8 OLI_TIRS | 地理空间数据云 | 2010-2015 | 遥感影像数据 |
中国土地利用/覆被 | 中国科学院地理科学与资源研究所地球系统科学数据共享平台 | 1990-2015 | 1990、2000、2005、2010、2015年5期土地利用数据 |
表2 六盘水市不同土地利用类型的P因子值Tab. 2 P-factor values of different land use types in Liupanshui |
土地利用类型 | 水田 | 旱地 | 林地 | 草地 | 采矿用地 | 裸地 |
---|---|---|---|---|---|---|
P因子值 | 0.01 | 0.4 | 1 | 0.8 | 0.5 | 1 |
表3 1990-2015年六盘水市多年平均土壤侵蚀强度面积Tab. 3 Multi-year average soil erosion intensity area of Liupanshui from 1990 to 2015 |
级别 | 平均侵蚀模数/t/(hm2·a) | 面积/km² | 面积占比/% |
---|---|---|---|
微度侵蚀 | <500 | 3959.99 | 60.2 |
轻度侵蚀 | 500~2500 | 1534.69 | 23.3 |
中度侵蚀 | 2500~5000 | 737.11 | 11.2 |
强烈侵蚀 | 5000~8000 | 265.32 | 4.0 |
极强烈侵蚀 | 8000~15 000 | 57.54 | 0.9 |
剧烈侵蚀 | >15 000 | 26.71 | 0.4 |
表4 六盘水市各区县土壤侵蚀强度等级面积Tab. 4 Areas and proportions of different soil erosion intensity grades in each district of Liupanshui |
时段/年 | 侵蚀等级 | 钟山区 | 六枝特区 | 盘县 | 水城县 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km² | 占比/% | 面积/km² | 占比/% | 面积/km² | 占比/% | 面积/km² | 占比/% | |||||
1990-2000 | 微度侵蚀 | 326.41 | 73.8 | 1297.88 | 74.1 | 2621.23 | 66.1 | 2649.06 | 74.5 | |||
轻度侵蚀 | 46.86 | 10.6 | 142.07 | 8.1 | 435.45 | 10.9 | 270.19 | 7.6 | ||||
中度侵蚀 | 39.47 | 8.9 | 152.09 | 8.7 | 456.88 | 11.5 | 296.30 | 8.3 | ||||
强烈侵蚀 | 24.48 | 5.5 | 121.37 | 6.9 | 361.58 | 9.1 | 256.23 | 7.2 | ||||
极强烈侵蚀 | 3.54 | 0.8 | 23.86 | 1.5 | 63.67 | 1.7 | 53.59 | 1.5 | ||||
剧烈侵蚀 | 1.33 | 0.4 | 13.09 | 0.7 | 27.32 | 0.7 | 30.79 | 0.9 | ||||
2000-2015 | 微度侵蚀 | 278.06 | 63.3 | 1075.56 | 61.8 | 2242.21 | 56.9 | 2135.72 | 60.6 | |||
轻度侵蚀 | 125.56 | 28.6 | 496.74 | 28.6 | 1236.17 | 31.4 | 1043.48 | 29.6 | ||||
中度侵蚀 | 21.56 | 4.9 | 03.09 | 5.4 | 258.13 | 6.6 | 185.62 | 5.3 | ||||
强烈侵蚀 | 11.37 | 2.6 | 53.65 | 3.2 | 152.07 | 3.9 | 113.93 | 3.2 | ||||
极强烈侵蚀 | 1.73 | 0.4 | 10.97 | 0.6 | 28.29 | 0.7 | 24.20 | 0.6 | ||||
剧烈侵蚀 | 1.04 | 0.2 | 9.34 | 0.4 | 19.73 | 0.5 | 21.23 | 0.6 |
表5 土壤侵蚀强度影响因子的q值和P值Tab. 5 The q value and p value of influencing factors of soil erosion |
因子 | 土地利用 类型 | 植被 覆盖度 | 坡度/° | 多年平均降雨量/mm |
---|---|---|---|---|
q值 | 0.0041 | 0.1426 | 0.0027 | 0.0107 |
P值 | 0.0577 | 0.0000 | 0.0311 | 0.0000 |
表6 土壤侵蚀影响因素交互作用下q值Tab. 6 The q values of dominant interactions between soil erosion influencing factor |
土地利用 类型 | 植被 覆盖度 | 坡度 | 多年平均 降雨量 | |
---|---|---|---|---|
土地利用类型 | 0.0041 | 0.1861 | 0.0174 | 0.0344 |
植被覆盖度 | 0.1861 | 0.1426 | 0.1771 | 0.1810 |
坡度 | 0.0175 | 0.1771 | 0.0027 | 0.0231 |
多年平均降雨量 | 0.0344 | 0.1810 | 0.0231 | 0.0107 |
表7 各影响因子侵蚀高风险区域及土壤侵蚀强度平均值Tab. 7 High risk areas of soil erosion and its mean value of each influencing factor (t/(hm2﹒a)) |
土地利用 类型 | 植被 覆盖度 | 坡度 | 多年平均 降雨量 | |
---|---|---|---|---|
高风险区 | 未利用土地 | <0.3 | >25° | 1543~1593 |
平均土壤侵蚀强度 | 19.17 | 163.50 | 20.29 | 27.96 |
[1] |
张洪江 . 土壤侵蚀原理[M]. 北京: 中国林业出版社, 2000.
[
|
[2] |
李占斌 . 土壤侵蚀与水土保持研究进展[J]. 土壤学报, 2008,45(5):801-802.
[
|
[3] |
中华人民共和国水利部. 全国水土流失公告[R]. 北京, 2002.
[ Ministry of Water Resources of the People's Republic of China. National soil and water loss announcement[R]. Beijing, 2002. ]
|
[4] |
|
[5] |
|
[6] |
江忠善, 宋文经 . 黄河中游黄土丘陵沟壑区小流域产沙量计算[C]. 第一次河流泥沙国际学术讨论会文集, 北京: 光华出版社, 1980: 63-72.
[
|
[7] |
王星宇 . 黄土地区流域产沙数学模型[J].泥沙研究, 1987(3):41-46.
[
|
[8] |
蔡强国, 陆兆熊, 王贵平 . 黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报, 1996(2):108-116.
[
|
[9] |
姜琳, 边金虎, 李爱农 , 等. 岷江上游2000-2010年土壤侵蚀时空格局动态变化[J]. 水土保持学报, 2014,28(1):19-22.
[
|
[10] |
查良松, 邓国徽, 谷家川 . 1992 -2013年巢湖流域土壤侵蚀动态变化[J]. 地理学报,2015, 70(11) 1709-1715.
[
|
[11] |
彭琴, 林昌虎, 何腾兵 . 贵州喀斯特山区水土流失特征与水土保持研究进展[J]. 贵州科学, 2006,16(3):66-70.
[
|
[12] |
陈报章, 渠俊峰, 葛梦玉 , 等. 徐州市水土流失时空变化研究[J]. 地球信息科学学报, 2018,20(11):1622-1630.
[
|
[13] |
尹璐, 闫庆武, 卞正富 . 基于RUSLE模型的六盘水市土壤侵蚀评价[J]. 生态与农村环境学报, 2016,32(3):389-396.
[
|
[14] |
张勇荣, 杨琴, 刘兴荣 . 基于ASTRE GDEMA的六盘水市地形特征分析[J].贵州师范学院学报, 2011,9(16) 222-225.
[
|
[15] |
国家气象信息中心. 中国地面气候资料日值数据集[DB/OL].
[ National Meteorological Information Center. Daily data sets of Chinese surface climatological data[DB/OL].
|
[16] |
资源环境数据云平台. 土壤数据库[DB/OL].
[ Resource and Environment Data Cloud Platform. Soil database[DB/OL].
|
[17] |
地理空间数据云. DEM数字高程数据[DB/OL].
[ Ge ospatial Data Cloud. DEM digital elevation data[DB/OL].
|
[18] |
地理空间数据云. LANDSAT系列数据[DB/OL].
[ Ge ospatial Data Cloud. LANDSAT series data[DB/OL].
|
[19] |
刘纪远, 岳天祥, 鞠洪波 , 等. 中国西部生态系统综合评估[M]. 北京: 气象出版社, 2006.
[
|
[20] |
章文波, 谢云, 刘宝元 . 利用日雨量计算降雨侵蚀力的方法研究[J]. 地理科学, 2002,22(6):20-23.
[
|
[21] |
汪邦稳, 方少文, 杨勤科 . 赣南地区水土流失评价模型及其影响因子获取方法研究[J]. 中国水土保持, 2011,10(12):12-15.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
刘宝元, 张科利, 焦菊英 . 土壤可蚀性及其在侵蚀预报中的应用[J]. 自然资源学报, 1999,21(4):345-350.
[
|
[26] |
蔡崇法, 丁树文, 史志华 , 等. 应用USLE模型与地理信息IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000,14(2):22-24.
[
|
[27] |
杨冉冉, 徐涵秋, 林娜 , 等. 基于RUSLE的福建省长汀县河田盆地区土壤侵蚀定量研究[J]. 生态学报, 2013,33(10):2977-2978.
[
|
[28] |
王尧, 蔡运龙, 潘懋 , 等. 贵州省乌江流域土壤侵蚀模拟—基于GIS、RUSLE 和ANN技术的研究[J]. 中国地质, 2014,41(5):1735-1747.
[
|
[29] |
邹雅婧, 闫庆武, 谭学玲 , 等. 渭北矿区土壤侵蚀评估及驱动因素分析[J/OL]. 干旱区地理:1-11.[2019-11-05].
[
|
[30] |
|
[31] |
唐克丽 . 中国土壤侵蚀与水土保持学的特点及展望[J]. 水土保持研究, 1999,6(2):3-8.
[
|
[32] |
王劲峰, 徐成东 . 地理探测器:原理与展望[J]. 地理学报, 2017,72(1):116-134.
[
|
[33] |
王欢, 高江波, 侯文娟 . 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因[J]. 地理学报, 2018,73(9):1674-1686.
[
|
[34] |
贵州省水利厅. 贵州省水土流失公告[EB/OL].( 2006-09-14)[2013-11-20].
[ Water resources department of Guizhou province. Notice of soil erosion in Guizhou province[EB/OL].( 2006-09-14) [2013-11-20].
|
[35] |
贵州省水利厅. 贵州省水土流失公告(2006-2010)[EB/OL]. (2013-02-01)[2013-11-20].
[ Water resources department of Guizhou province. Notice of soil erosion in Guizhou province(2006-2010) [EB/OL]. (2013-02-01)[2013-11-20].
|
[36] |
贵州省水利厅. 贵州省水土流失公告(2011-2015)[EB/OL].( 2016- 09- 29)[2013-11-20].
|
[37] |
中华人民共和国水利部. SL 190-2007,土壤侵蚀分类分级标准[S]. 北京: 中国水利水电出版社, 2008, 1-20.
[ Ministry of Water Resources of the People's Republic of China. SL 190-2007, Classification and classification of soil erosion [S]. Beijing: China Water Resources and Hydropower Press, 2008, 1-20. ]
|
[38] |
六盘水市人民政府. 六盘水市遭受强降雨降水灾害[ED/OL]( 2017- 07- 18).
[ Liupanshui city suffered from heavy rainfall disaster[ED/OL]( 2017- 07- 18).
|
[39] |
国家林业局退耕还林办公室. 贵州省六盘水市实施新一轮退耕还林成效显著[ED/OL]( 2017- 08- 21).
[ Office of returning farmland to forest of state forestry administration. Liupanshui of Guizhou province, a new round of Grain for Green Project has achieved remarkable results[ED/OL]( 2017- 08- 21).
|
[40] |
高吉喜 等. 西南山地退化生态系统评估与恢复重建技术[D]. 北京: 科学出版社, 2014.
[
|
[41] |
杨波, 王全九, 董莉丽 . 榆林市还林还草后土壤保持功能和经济价值评价[J]. 干旱区研究, 2017,34(6):1314-1422.
[
|
/
〈 | 〉 |