Journal of Geo-information Science >
State of the Art and Perspective of Agricultural Land Use Remote Sensing Information Extraction
Received date: 2020-04-07
Request revised date: 2020-04-20
Online published: 2020-06-10
Supported by
The Strategic Priority Research Program of Chinese Academy of Sciences(XDA19040301)
National Natural Science Foundation of China(41871349)
Copyright
Agricultural lands account for nearly half of the global land area, and changes in agricultural land use directly affect food security, water security, ecological security, and climate change. Remote sensing is the main means for acquiring agricultural land use information. In recent years, the free opening of medium-resolution remote sensing data such as Landsat, Sentinel, and China's GaoFen satellites has opened unprecedented opportunities for extraction of agricultural land use information. A series of promising research progress has been made. This review paper analyzes the state of the art of agricultural land use information extraction from four aspects:cropland, crop type, agricultural planting system, and agricultural land management. We found that: (1) The products of cropland mapping have been improved from the past coarse resolution (500~1000 m) to a higher spatial resolution of 10~30 m in the past decade. The global and regional cropland layers have been well established; but there is a need to track historical cropland changes, especially to identify the key turning points, by making full use of the existing remote sensing data (data fusion and satellite constellation approaches). (2) Existing crop type mapping efforts have been mostly carried out by combining ground survey data with satellite remote sensing (mainly Landsat and Sentinel-2). It has been operationalized in North America and Europe, but the ability to monitor crop planting areas needs to be strengthened in other countries including China. Also, the early season monitoring capacity of crop type mapping needs to be improved; (3) Existing studies on tracking agricultural planting systems are mainly concentrated in Eastern Europe (e.g., the abandonment after the breakup of the Soviet Union). In China, cropland abandonment, rotation, and fallow are also common in the recent decade, due to economic and policy factors; however, existing studies are lacking on this issue. (4) in terms of the agricultural land management, encouraging progress has been made on the regional products of irrigation, but the reliability and accuracy of the products need to be improved. New technologies, including the emerging multiple sources of remote sensing data so-called remote sensing big data, deep learning algorithms, and cloud computing platforms (e.g., Google Earth Engineand Amazon Web Services) provide unprecedented opportunities for future agricultural land use information extraction, which will rely on (1) the fusion of multi-source data to form remote sensing big data with higher spatial, spectral, and temporal resolutions, (2) coupling of intelligent methods such as machine learning and deep learning algorithms with expert knowledge-based methods considering geographical and phenological information, and (3) the application of cutting-edge technologies such as remote sensing cloud computing platforms.
DONG Jinwei , WU Wenbin , HUANG Jianxi , YOU Nanshan , HE Yingli , YAN Huimin . State of the Art and Perspective of Agricultural Land Use Remote Sensing Information Extraction[J]. Journal of Geo-information Science, 2020 , 22(4) : 772 -783 . DOI: 10.12082/dqxxkx.2020.200192
感谢刘纪远研究员在论文撰写和修改过程中提供的宝贵意见!
[1] |
|
[2] |
|
[3] |
杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析[J]. 中国农业科学, 2010,43(2):329-336.
[
|
[4] |
|
[5] |
|
[6] |
刘纪远, 匡文慧, 张增祥 , 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报, 2014,69(1):3-14.
[
|
[7] |
李秀彬 . 中国近20年来耕地面积的变化及其政策启示[J]. 自然资源学报, 1999,14(4):329-333.
[
|
[8] |
吴炳方 . 全国农情监测与估产的运行化遥感方法[J]. 地理学报, 2000,67(1):25-35.
[
|
[9] |
唐华俊 . 农业遥感研究进展与展望[J]. 农学学报, 2018,8(1):167-171.
[
|
[10] |
唐华俊, 吴文斌, 余强毅 , 等. 农业土地系统研究及其关键科学问题[J]. 中国农业科学, 2015,48(5):900-910.
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
岳昊, 曲平, 王刚 , 等. 基于地理国情普查与国土二调数据的耕地土地利用差异性分析研究[J]. 测绘与空间地理信息, 2018,41(8):186-188.
[
|
[25] |
|
[26] |
曹鑫, 陈学泓, 张委伟 , 等. 全球30 m空间分辨率耕地遥感制图研究[J]. 中国科学:地球科学, 2016,46(11):1426-1435.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
阳小琼, 朱文泉, 潘耀忠 , 等. 作物种植面积空间对地抽样方法设计[J]. 农业工程学报, 2007(12):150-155.
[
|
[41] |
|
[42] |
|
[43] |
|
[44] |
闫慧敏, 刘纪远, 曹明奎 . 近20年中国耕地复种指数的时空变化[J]. 地理学报, 2005,60(4):559-566.
[
|
[45] |
丁明军, 陈倩, 辛良杰 , 等. 1999-2013年中国耕地复种指数的时空演变格局[J]. 地理学报, 2015,70(7):1080-1090.
[
|
[46] |
|
[47] |
|
[48] |
|
[49] |
蒋敏, 李秀彬, 辛良杰 , 等. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示[J]. 地理学报, 2019,74(1):32-43.
[
|
[50] |
|
[51] |
|
[52] |
张英, 李秀彬, 宋伟 , 等. 重庆市武隆县农地流转下农业劳动力对耕地撂荒的不同尺度影响[J]. 地理科学进展, 2014,33(4):552-560.
[
|
[53] |
张学珍, 赵彩杉, 董金玮 , 等. 1992-2017年基于荟萃分析的中国耕地撂荒时空特征[J]. 地理学报, 2019,74(3):411-420.
[
|
[54] |
史铁丑, 李秀彬 . 基于地块尺度的重庆山区耕地撂荒风险研究[J]. 山地学报, 2017,35(4):543-555.
[
|
[55] |
程维芳, 周艺, 王世新 , 等. 基于多光谱遥感的撂荒地识别方法研究[J]. 光谱学与光谱分析, 2011,31(6):1615-1620.
[
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
裴源生, 李旭东, 杨明智 . 21世纪以来我国灌溉面积构成及农业种植结构变化趋势[J]. 灌溉排水学报, 2018,37(4):1-8.
[
|
[61] |
|
[62] |
刘逸竹, 吴文斌, 李召良 , 等. 基于时间序列NDVI的灌溉耕地空间分布提取[J]. 农业工程学报, 2017,33(22):276-284.
[
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
宋文龙, 李萌, 路京选 , 等. 基于GF-1卫星数据监测灌区灌溉面积方法研究——以东雷二期抽黄灌区为例[J]. 水利学报, 2019,50(7):854-863.
[
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
何娇娇, 刘海新, 张安兵 , 等. 温度反演和VSWI农田灌溉面积提取[J]. 测绘科学, 2017,42(5):1-10.
[
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
李升发, 李秀彬 . 耕地撂荒研究进展与展望[J]. 地理学报, 2016,71(3):370-389.
[
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
/
〈 |
|
〉 |