Journal of Geo-information Science >
Comparative Study of Different Temperature Interpolation Methods in the Belt and Road Regions based on GIS
Received date: 2020-02-08
Request revised date: 2020-03-18
Online published: 2020-06-10
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20010201)
Copyright
The Belt and Road initiative was a globalization cooperation initiative put forward by China to strengthen the opening-up in the new era. With the development of globalization, it is of great significance to optimize the allocation of resources and environment. As an important reference dataset and input factor, the result of temperature interpolation is the basis for optimal allocation of regional resources and environment in large scale study area. Here, taking the Belt and Road (BR) regions as the study area, the monthly and annual mean temperature data in 2679 meteorological stations from 1980 to 2017 were interpolated based on Geographic Information Technology (GIS), using Inverse Distance Squared (IDS), CoKriging (CK), Regression-IDS (RIDS) and Regression-CK (RCK) interpolation methods. The 10 km map of spatial interpolation were generated using aforementioned four methods. The results showed: (1) In the BR regions, the geographical distribution of temperature were better displayed by IDS, CK, RIDS and RCK. The Mean Square Root Error (RMSE) of monthly mean temperature were 1.93~2.43 ℃, 1.78~2.14 ℃, 1.31~2.23 ℃ and 1.23~1.92 ℃, IDS, CK, RIDS and RCK, respectively. And the RMSE of annual mean temperature were 1.94 ℃, 1.83 ℃, 1.37 ℃ and 1.27 ℃, IDS, CK, RIDS and RCK, respectively. (2) The accuracy of CK interpolation with covariates was better than that of IDS, and the peak values produced by IDS were corrected. (3) After considering the impact of terrain, the accuracy of interpolation in temperature based on Residual correction were improved by 29.4% and 30.6%, RIDS compared to IDS and RCK compared to CK, respectively. In summary, The Regression-CK performed better than other three methods in this study area and it can be considered as temperature and climate data interpolation methods in the BR regions.
YANG Yanzhao , LANG Tingting , ZHANG Chao , JIA Kun . Comparative Study of Different Temperature Interpolation Methods in the Belt and Road Regions based on GIS[J]. Journal of Geo-information Science, 2020 , 22(4) : 867 -876 . DOI: 10.12082/dqxxkx.2020.200060
表1 “一带一路”地区平均气温与经度、纬度和海拔高度之间的相关系数、复相关系数及回归方程Tab. 1 Correlation coefficient, multiple correlation coefficient and linear regression equation of mean temperature with latitude, longitude and altitude in the BR regions |
月份 | 相关系数(λ) | 相关系数(φ) | 相关系数(h) | 复相关系数 | 回归方程 序号 | |
---|---|---|---|---|---|---|
1 | -0.115** | -0.877** | -0.152** | 0.951 | Z1=46.648-0.127λ-0.913φ-0.005h | (11) |
2 | -0.085** | -0.896** | -0.131** | 0.957 | Z2=45.946-0.112λ-0.886φ-0.004h | (12) |
3 | -0.052** | -0.910** | -0.123** | 0.959 | Z3=44.328-0.088λ-0.777φ-0.004h | (13) |
4 | -0.008** | -0.904** | -0.120** | 0.941 | Z4=42.320-0.060λ-0.635φ-0.003h | (14) |
5 | 0.007 | -0.869** | -0.140** | 0.905 | Z5=40.040-0.043λ-0.484φ-0.003h | (15) |
6 | 0.035 | -0.803** | -0.164** | 0.837 | Z6=37.136-0.026λ-0.349φ-0.002h | (16) |
7 | 0.020 | -0.746** | -0.180** | 0.786 | Z7=36.040-0.023λ-0.282φ-0.002h | (17) |
8 | -0.009 | -0.794** | -0.171** | 0.839 | Z8=37.403-0.031λ-0.324φ-0.002h | (18) |
9 | 0.001 | -0.872** | -0.174** | 0.915 | Z9=38.679-0.040λ-0.434φ-0.003h | (19) |
10 | -0.038** | -0.899** | -0.162** | 0.950 | Z10=41.693-0.064λ-0.594φ-0.004h | (20) |
11 | -0.094** | -0.888** | -0.147** | 0.954 | Z11=45.833-0.102λ-0.785φ-0.004h | (21) |
12 | -0.115** | -0.875** | -0.156** | 0.949 | Z12=46.378-0.122λ-0.874φ-0.005h | (22) |
年平均 | -0.055** | -0.901** | -0.153** | 0.956 | Z年均=41.883-0.070λ-0.612φ-0.003h | (23) |
注:**表示在0.01级别(双尾),相关性显著。 |
表2 “一带一路”地区IDS、RIDS、CK和RCK插值法的交叉验证结果Tab. 2 The results of cross validation errors for IDS, RIDS, CK and RCK in the BR regions (℃) |
月份 | IDS | RIDS | CK | RCK | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ME | RSME | ME | RMSE | ME | RMSE | ME | RMSE | ||||
1 | 0.026 | 2.30 | -0.078 | 2.23 | 0.007 | 2.14 | -0.009 | 1.92 | |||
2 | 0.038 | 2.30 | -0.059 | 1.98 | 0.006 | 2.05 | -0.007 | 1.70 | |||
3 | 0.030 | 2.30 | -0.048 | 1.67 | 0.004 | 2.04 | -0.004 | 1.52 | |||
4 | 0.003 | 2.19 | -0.019 | 1.60 | 0.002 | 2.07 | -0.001 | 1.51 | |||
5 | -0.013 | 2.13 | 0.000 | 1.58 | 0.003 | 2.09 | -0.002 | 1.51 | |||
6 | -0.025 | 2.15 | 0.014 | 1.67 | 0.007 | 2.17 | -0.004 | 1.62 | |||
7 | -0.029 | 2.12 | 0.019 | 1.67 | 0.003 | 2.11 | -0.006 | 1.66 | |||
8 | -0.021 | 2.00 | 0.010 | 1.50 | 0.003 | 1.99 | -0.017 | 1.59 | |||
9 | -0.014 | 1.93 | 0.000 | 1.31 | 0.002 | 1.89 | -0.003 | 1.28 | |||
10 | 0.019 | 1.97 | -0.036 | 1.32 | 0.004 | 1.78 | -0.003 | 1.23 | |||
11 | -0.048 | 2.21 | -0.068 | 1.73 | 0.007 | 1.85 | -0.007 | 1.50 | |||
12 | 0.062 | 2.43 | -0.086 | 2.14 | 0.016 | 2.04 | -0.010 | 1.84 | |||
年均气温 | 0.013 | 1.94 | -0.028 | 1.37 | 0.003 | 1.83 | -0.004 | 1.27 |
[1] |
刘慧, 刘卫东 . “一带一路”建设与我国区域发展战略的关系研究[J]. 中国科学院院刊, 2017(4):18-25.
[
|
[2] |
刘卫东 . “一带一路”:引领包容性全球化[J]. 中国科学院院刊, 2017,32(4):331-339.
[
|
[3] |
刘清杰 . “一带一路”沿线国家资源分析[J]. 经济研究参考, 2017(15):70-104.
[
|
[4] |
胡伟, 刘壮, 邓超 . “一带一路”空间信息走廊建设的思考[J]. 工业经济论坛, 2015(5):132-140.
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
何鹏, 蹇东南, 李晓 , 等. 复杂地形影响下四川省逐月气温空间插值方法研究[J]. 生态与农村环境学报, 2019,35(6):801-808.
[
|
[9] |
阎洪 . 气候时空数据的样条插值与应用[J]. 地理与地理信息科学, 2003,19(5):27-31.
[
|
[10] |
唐焰, 封志明, 杨艳昭 . 基于栅格尺度的中国人居环境气候适宜性评价[J]. 资源科学, 2008,30(5):648-653.
[
|
[11] |
王志芳 . 中国建设“一带一路”面临的气候安全风险[J]. 国际政治研究, 2015(4):56-74.
[
|
[12] |
韩权, 江东, 付晶莹 , 等. “一带一路”沿线撒哈拉以南非洲地区能矿资源投资风险指数研究[J]. 科技导报, 2018,36(3):108-115.
[
|
[13] |
吴绍洪, 刘路路, 刘燕华 , 等. “一带一路”陆域地理格局与环境变化风险[J]. 地理学报, 2018,73(7):1214-1225.
[
|
[14] |
王新鸿, 邱实, 姜小光 , 等. 高光谱热红外数据反演地表温度与比辐射率方法研究[J]. 干旱区地理, 2010(3):107-114.
[
|
[15] |
封志明, 杨艳昭, 丁晓强 , 等. 气象要素空间插值方法优化[J]. 地理研究, 2004,23(3):357-364.
[
|
[16] |
修思玉, 吕泓辰, 康世伦 , 等. 地理信息系统中不同空间插值方法的比较研究[J]. 森林工程, 2014,30(5):110-113.
[
|
[17] |
毛萍, 黄东晓, 王芋华 , 等. 全球变化领域研究现状与趋势的大数据分析[J]. 中国科学院大学学报, 2017,34(4):441-451.
[
|
[18] |
|
[19] |
|
[20] |
林忠辉, 莫兴国, 李宏轩 , 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002,57(1):47-56.
[
|
[21] |
彭彬, 周艳莲, 高苹 , 等. 气温插值中不同空间插值方法的适用性分析——以江苏省为例[J]. 地球信息科学学报, 2011,13(4):539-548.
[
|
[22] |
段平, 盛业华, 李佳 , 等. 自适应的IDW插值方法及其在气温场中的应用[J]. 地理研究, 2014,33(8):1417-1426.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
李佳霖, 樊子德, 邓敏 . 基于空间异质分区的残差IDW插值方法[J]. 地理与地理信息科学, 2015,31(5):29-33.
[
|
[27] |
李框宇, 周梅, 陈玖英 , 等. 一种适用于气温空间插值的改进梯度距离平方反比法[J]. 2019,36(4):491-497.
[
|
[28] |
李巍 . 降雨量空间插值方法比较研究[J]. 安徽农业科学, 2014,42(12):3667-3669.
[
|
[29] |
彭思岭 . 气象要素时空插值方法研究[D]. 长沙:中南大学, 2011: 3-10.
[
|
[30] |
李波, 黄敬峰, 金志凤 , 等. 基于GIS的浙江省年降水量空间分布推算方法研究[J]. 浙江大学学报(理学版), 2010,37(2):121-126.
[
|
[31] |
张国峰, 杨立荣, 瞿明凯 , 等. 基于地理加权回归克里格的日平均气温插值[J]. 应用生态学报, 2015,26(5):246-251.
[
|
[32] |
张国峰, 白蕤, 李伟光 , 等. 海南岛日最低、最高气温空间插值研究[J]. 中国农学通报, 2017,33(19):101-109.
[
|
[33] |
李金洁, 王爱慧 . 基于西南地区台站降雨资料空间插值方法的比较[J]. 气候与环境研究, 2019,24(1):50-60.
[
|
[34] |
邹嘉龄, 刘卫东 . 2001-2013年中国与“一带一路”沿线国家贸易网络分析[J]. 地理科学, 2016,36(11):1629-1636.
[
|
[35] |
郝林钢 . “一带一路”分区自然地理特征及水资源分析[D]. 2019: 20-25.
[
|
[36] |
杨凤海, 王帅, 刘晓庆 , 等. 基于ArcGIS的近10年黑龙江省旬平均气温插值与建库[J]. 黑龙江农业科学, 2009(5):126-130.
[
|
[37] |
马轩龙, 李春娥, 陈全功 . 基于GIS的气象要素空间插值方法研究[J]. 草业科学, 2008,25(11):13-19.
[
|
[38] |
孙钰森, 王维芳, 李国春 . 基于地理加权回归克里格模型的帽儿山地区森林碳储量空间分布[J]. 应用生态学报, 2019,30(5):223-231.
[
|
/
〈 | 〉 |