Journal of Geo-information Science >
Explaining Street Contact Crime based on Dynamic Spatio-Temporal Distribution of Potential Targets
Received date: 2019-11-21
Request revised date: 2020-02-03
Online published: 2020-06-10
Supported by
Key Project of Science and Technology Program of Guangzhou City, China(201804020016)
National Key Research an Development Program of China(2018YFB0505500)
National Key Research an Development Program of China(2018YFB0505503)
Key Program of National Natural Science Foundation of China(41531178)
Research Team Program of Natural Science Foundation of Guangdong Province, China(2014A030312010)
National Natural Science Foundation of China(41901177)
Natural Science Foundation of Guangdong Province, China(2019A1515011065)
Copyright
Street contact crime refers to violations of the law committed by offenders through directly contact with victims in the street such as pickpocketing, robbery and snatch, etc, which is one of the common crimes in China. It is assumed that street contact crime is the result of interaction among motivated offenders, potential targets and absence of capable guardians. Different types of big data are employed in previous studies as ambient population to represent the potential targets which is one of the essential elements in the routine activity theory. However, these types of big data can not be applied in a micro-scale study of street contact crime because of their limitations. This study aims to fill this gap by using a new type of big data, WeChat heat map, an internet application which shows demographic distribution and changes dynamically with high spatial-temporal resolution to study the street contact crime in XT, ZG city, based on dynamic spatio-temporal distribution of potential Targets. The spatio-temporal pattern of street contact crime in XT, ZG city and their influencing factors were revealed. Street contact crime data, Points of Interest (POI) and data of house prices in XT, ZG city were used in this study as well. The whole day is divided into three intervals (wee hours: 00:00-06:59, daytime:07:00-17:59, night:18:00-23:59) and negative binomial regression models are built for the three intervals accordingly. It is demonstrated that the spatio-temporal distribution of street contact crime in XT, ZG city aggregates obviously. Street contact crime in XT, ZG city mainly concentrate in urban village and night is the peak period while daytime is the low period. The count of street contact crime in XT, ZG city reach its maximum between 22:00 and 22:59. Factors have different impacts on street contact crime from interval to interval. During the wee hours, WeChat population,KTV and leisure Club have significant positive impact on street contact crime. In the daytime, WeChat population and gym have significant positive impact on street contact crime. At night, WeChat population, restaurants, Leisure Club, bus station and distance to the nearest security department have significant positive impact on street contact crime. Others factors such as internet café, shopping mall, house prices and length of road have no significant impact on street contact crime in the whole day. WeChat population as an ambient population represent the potential targets well in routine activity theory as it has significant positive impact on street contact crime in the whole day.
LIU Lin , LIANG Siyi , SONG Guangwen . Explaining Street Contact Crime based on Dynamic Spatio-Temporal Distribution of Potential Targets[J]. Journal of Geo-information Science, 2020 , 22(4) : 887 -897 . DOI: 10.12082/dqxxkx.2020.190709
表1 变量的描述统计Tab. 1 Descriptive statistics of dependent and independent variables |
变量 | 平均值 | 方差 | 最小值 | 最大值 |
---|---|---|---|---|
街面接触型犯罪数量/件 | ||||
00:00—06:59 | 1.16 | 7.34 | 0 | 29 |
07:00—17:59 | 1.12 | 2.77 | 0 | 9 |
18:00—23:59 | 1.08 | 4.50 | 0 | 15 |
微信人口(百人) | ||||
00:00—06:59 | 7.21 | 44.16 | 0.29 | 33.12 |
07:00—17:59 | 29.34 | 427.87 | 0.80 | 97.16 |
18:00—23:59 | 17.37 | 178.59 | 0.64 | 65.53 |
餐饮点/个 | 0.70 | 1.62 | 0 | 8 |
网吧/个 | 0.08 | 0.13 | 0 | 3 |
健身房/个 | 0.02 | 0.02 | 0 | 1 |
KTV/个 | 0.01 | 0.08 | 0 | 2 |
休闲会所/个 | 0.06 | 0.07 | 0 | 2 |
购物场所/个 | 1.73 | 8.88 | 0 | 17 |
公交站点/个 | 0.19 | 0.25 | 0 | 3 |
与最近巡逻驻点的距离/km | 0.37 | 0.11 | 0 | 1.34 |
平均房屋价格/百万元 | 2.53 | 0.52 | 0.87 | 5.29 |
道路长度/km | 0.70 | 0.50 | 0 | 6.76 |
表2 不同时段街面接触型犯罪负二项回归模型结果Tab. 2 Negative binomial regression model for different time intervals of street contact crime |
变量 | 凌晨—清晨(00:00—06:59) | 白天(07:00—17:59) | 晚上(18:00—23:59) | ||||||
---|---|---|---|---|---|---|---|---|---|
B | IRR | B | IRR | B | IRR | ||||
常数 | -2.05* | 0.13 | -1.02 | 0.36 | -0.85 | 0.42 | |||
微信人口 | 0.12*** | 1.13 | 0.03*** | 1.03 | 0.04*** | 1.04 | |||
餐饮点 | 0.10 | 1.10 | 0.07 | 1.07 | 0.27*** | 1.31 | |||
网吧 | -0.15 | 0.86 | 0.22 | 1.25 | -0.34 | 0.70 | |||
健身房 | -0.31 | 0.73 | 0.99* | 2.69 | 0.08 | 1.08 | |||
KTV | 1.22** | 3.38 | 0.02 | 1.02 | 0.89 | 2.44 | |||
休闲会所 | 0.84* | 2.31 | 0.22 | 1.25 | 0.77* | 2.16 | |||
购物场所 | 0.02 | 1.02 | 0.03 | 1.03 | -0.01 | 0.99 | |||
公交站点 | 0.34 | 1.43 | 0.24 | 1.28 | 0.64*** | 1.89 | |||
与最近巡逻驻点的距离 | 0.46 | 1.58 | 0.38 | 1.46 | 0.62* | 1.86 | |||
平均房屋价格 | 0.15 | 1.17 | -0.16 | 0.86 | -0.31 | 0.73 | |||
道路长度 | 0.11 | 1.11 | 0.07 | 1.07 | 0.00 | 1.00 | |||
AIC | 612.18 | 628.35 | 578.95 |
注:***表示P< 0.001,**表示P< 0.01,*表示P< 0.05,B为模型系数。 |
[1] |
姜超, 唐焕丽, 柳林 . 中国犯罪地理研究述评[J]. 地理科学进展, 2014,33(4):561-573.
[
|
[2] |
|
[3] |
徐冲, 柳林, 周素红 , 等. DP半岛街头抢劫犯罪案件热点时空模式[J]. 地理学报, 2013,68(12):1714-1723.
[
|
[4] |
徐冲, 柳林, 周素红 . DP半岛街头抢劫案件的临近重复发生模式[J]. 地理研究, 2015,34(2):384-394.
[
|
[5] |
毛媛媛, 丁家骏 . 抢劫与抢夺犯罪行为时空分布特征研究——以上海市浦东新区为例[J]. 人文地理, 2014,29(1):49-54.
[
|
[6] |
|
[7] |
郑文升, 卓蓉蓉, 罗静 , 等. 基于空间句法的武汉城区“两抢一盗”犯罪分布环境[J]. 地理学报, 2016,71(10):1710-1720.
[
|
[8] |
刘大千, 宋伟, 修春亮 . 长春市“两抢两盗”犯罪的空间分析[J]. 地理科学, 2014,34(11):1344-1352.
[
|
[9] |
|
[10] |
徐冲, 柳林, 周素红 , 等. 微观空间因素对街头抢劫影响的空间异质性——以DP半岛为例[J]. 地理研究, 2017,36(12):2492-2504.
[
|
[11] |
|
[12] |
|
[13] |
肖露子, 柳林, 周素红 , 等. ZG市工作日地铁站点扒窃案件的时空分布及其影响因素[J]. 地理科学, 2018,38(8):1227-1234.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
申犁帆, 王烨, 张纯 , 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018,73(12):2423-2439.
[
|
[21] |
腾讯 , 2018微信年度数据报告[ED/OL].[ 2019-01-09]. http://www.xinhuanet.com//zgjx/2019-01/10/c_1377326 68.htm.
[ Tencent. 2018 WeChat Annual Data Report [ED/OL]. [ 2019- 01- 09]. http://www.xinhuanet.com//zgjx/ 2019-01/10/c_137732668.htm.
|
[22] |
|
[23] |
|
[24] |
申犁帆, 张纯, 李赫 , 等. 城市轨道交通通勤与职住平衡状况的关系研究——基于大数据方法的北京实证分析[J]. 地理科学进展, 2019,38(6):791-806.
[
|
[25] |
宋广文, 肖露子, 周素红 , 等. 居民日常活动对扒窃警情时空格局的影响[J]. 地理学报, 2017,72(2):356-367.
[
|
[26] |
柳林, 杜方叶, 肖露子 , 等. 不同类型道路密度对公共空间盗窃犯罪率的影响——基于ZG市的实证研究[J]. 人文地理, 2017,32(6):32-38.
[
|
[27] |
杨刚斌, 柳林, 何深静 , 等. 广州门禁小区入室盗窃受害率与内部环境分析[J]. 人文地理, 2016,31(3):45-51.
[
|
[28] |
肖露子, 柳林, 宋广文 , 等. 基于理性选择理论的社区环境对入室盗窃的影响研究[J]. 地理研究, 2017,36(12):2479-2491.
[
|
[29] |
陈强 . 高级计量经济学及Stata应用[M]. 北京: 高等教育出版社, 2010.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
王雨晨, 过仲阳, 王媛媛 . 基于随机森林的犯罪风险预测模型研究[J]. 华东师范大学学报(自然科学版), 2017(4):89-96.
[
|
[34] |
柳林, 刘文娟, 廖薇薇 , 等. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018,37(6):761-771.
[
|
/
〈 | 〉 |