Journal of Geo-information Science >
A Study on the Influencing Factors and Driving Forces of Spatial Differentiation of Retail Formats in Guangzhou
Received date: 2019-07-04
Request revised date: 2020-02-21
Online published: 2020-08-25
Supported by
National Natural Science Foundation of China(41671128)
National Natural Science Foundation of China(41671130)
National Natural Science Foundation of China(41871150)
GDAS' Project of Science and Technology Development(2016GDASRC-0101)
Copyright
Exploration of the spatial differentiation of the retail industry based on large-scale geospatial data is of great significance for urban development. In the recent years, POI data has become an important data source for studying urban dynamics. POI data abstracts retail stores as a point on the map, and the data are of wide coverage and high fineness. These advantages make the POI data an ideal dataset for micro- analysis of urban retail commercial structure and their spatial distribution mechanism. Based on the data of 47 026 retail outlets in Guangzhou, we explored the driving mechanism of the spatial differentiation of the retail formats. By building an indicator system, we investigated the factors potentially affecting the spatial differentiation of the retail industry, which include population density, business conditions, public transportation convenience, format richness, and rent. Based on information entropy, kernel density function, and spatial regression, we analyzed the main influencing factors of the retail differentiation. Further, we divided the retail outlets by different urban areas and different retail formats, and conducted spatial regression analysis based on the same influencing factors to compare the main driving factors of different retail formats. Results shows that: (1) Demand, location, competition, and cost were the main driving force of the spatial differentiation of retail industry. Furthermore, because of the heterogeneity of the retail formats and the spatial heterogeneity of the city, there was also heterogeneity in the driving mechanism of the spatial differentiation in the retail industry. (2) There were significant spatial differences of the influencing factors. The inner circle of the city had higher population density, better accessibility, better business conditions, and higher format richness, and also higher land rent. There was a significant spatial differentiation between the old city area and the suburbs. (3) Compared with the traditional OLS regression method, the spatial regression method revealed the spatial distribution mechanism of the retail industry more accurately. The spatial error model revealed significant heterogeneity in the factors that influence the spatial agglomeration of the retail industry. Population density was the core driving force of retail spatial differentiation. Public transport convenience, business conditions, and format richness also had a positive effect on retail agglomeration, while the impact of rent was weak. The main driving factors of different retail formats and outlets located in different urban circle were different. Population density was the core factor, while the influence of other factors showed significant differences.
Key words: retail format; POI; spatial differentiation; influencing factor; driving force; Guangzhou
WU Kangmin , WANG Yang , YE Yuyao , ZHANG Hongou . A Study on the Influencing Factors and Driving Forces of Spatial Differentiation of Retail Formats in Guangzhou[J]. Journal of Geo-information Science, 2020 , 22(6) : 1228 -1239 . DOI: 10.12082/dqxxkx.2020.190353
表1 零售业态空间分异影响因素指标体系Tab. 1 Indicators for influencing factors of spatial differentiation of retail formats |
评价因子 | 代表性指标 | 指标的计算过程 | 预期作用方向 |
---|---|---|---|
人口密度 | 常住人口密度 | 常住人口/社区面积;其中社区面积中剔除了水系以及绿地等非建设用地面积 | 正向 |
公共交通便利性 | 地铁站点可达性 | 以各地铁站点为基础数据,以社区为基本评价单元,采用缓冲区赋分评价法得到公共交通便利性;位于地铁站点200 m(直线距离)范围内(9分);位于地铁站点200~400 m范围内(7分);位于地铁站点400~800 m范围内(5分);位于地铁站点800~1500 m范围内(3分);位于地铁站点1500 m范围外(1分) | 正向 |
商务条件 | 办公点集聚空间评价 | 以300 m×300 m为基本研究单元,以研究区商务办公大厦、事业单位POI点等为基础数据计算办公点集聚核密度值 | 正向 |
业态丰富度 | 零售熵值 | 以300 m×300 m为基本研究单元,计算格网单元的零售网点熵值 | 正向 |
地价租金 | 二手房售价 | 以社区二手房均价与楼栋数为基础数据,以小区楼栋数占社区楼栋总数为小区均价权重,计算小区加权均价,计算社区中所有小区的加权均价的均值 | 负向 |
表2 零售业网点总体空间集聚分异的影响因素回归分析结果Tab. 2 Regression results of influencing factors on the overall spatial agglomeration and differentiation of retail outlets |
OLS | SLM | SEM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
系数 | 标准差 | z统计值 | p | 系数 | 标准差 | z统计值 | p | 系数 | 标准差 | z统计值 | p | |||
常数项 | 144.8770*** | 1.4166 | 102.2690 | 0.0000 | 12.4940*** | 0.3013 | 41.4610 | 0.0000 | 29.3667*** | 0.5876 | 49.9783 | 0.0000 | ||
人口密度 | 657.4760*** | 17.9660 | 36.5956 | 0.0000 | 38.4481*** | 3.3612 | 11.4386 | 0.0000 | 69.5201*** | 5.5458 | 12.5357 | 0.0000 | ||
商务条件 | 5.5349*** | 0.0356 | 155.5820 | 0.0000 | 0.3354*** | 0.0082 | 40.7818 | 0.0000 | 4.3798*** | 0.0380 | 115.2720 | 0.0000 | ||
公共交通便利性 | 5.1620*** | 0.2582 | 19.9944 | 0.0000 | 0.2228*** | 0.0482 | 4.6233 | 0.0000 | 1.8038*** | 0.1225 | 14.7215 | 0.0000 | ||
业态丰度 | -38.1272*** | 0.7069 | -53.9336 | 0.0000 | -3.8552*** | 0.1363 | -28.2919 | 0.0000 | 7.3926*** | 0.2717 | 27.2078 | 0.0000 | ||
租金条件 | -2.8278*** | 0.4429 | -6.3848 | 0.0000 | -0.1055 | 0.0824 | -1.2802 | 0.2005 | 0.3857** | 0.1632 | 2.3638 | 0.0181 | ||
R-squared: 0.5155 似然估计:-286 235; AIC: 572 482 | R-squared: 0.9832 似然估计:-213 619; AIC: 427 252 | R-squared: 0.9903 似然估计:-202 927; AIC: 405865 |
注:表中*、**、***分别表示在0.1、0.05、0.01水平显著。 |
表3 不同圈层零售业空间集聚分异影响因素识别Tab. 3 Identification of influencing factors of spatial agglomeration and differentiation of retail industry in different circles |
核心圈层 | 内圈层 | 外圈层 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
系数 | 标准差 | z统计值 | p | 系数 | 标准差 | z统计值 | p | 系数 | 标准差 | z统计值 | p | |||
常数项 | 106.8000*** | 2.4841 | 42.9930 | 0.0000 | 42.6064*** | 1.2464 | 34.1839 | 0.0000 | 19.3990*** | 0.5358 | 36.2056 | 0.0000 | ||
人口密度 | 28.1051*** | 7.5107 | 3.7420 | 0.0002 | 59.0739*** | 10.8797 | 5.4298 | 0.0000 | 129.6830*** | 12.7430 | 10.1767 | 0.0000 | ||
商务条件 | 2.8623*** | 0.0613 | 46.6851 | 0.0000 | 5.6570*** | 0.0847 | 66.8221 | 0.0000 | 3.4267*** | 0.0751 | 45.6056 | 0.0000 | ||
公共交通便利性 | -0.0587 | 0.2147 | -0.2732 | 0.7847 | 0.7091*** | 0.2087 | 3.3971 | 0.0007 | 0.8652*** | 0.1832 | 4.7223 | 0.0000 | ||
业态丰度 | 2.2551*** | 0.5978 | 3.7726 | 0.0002 | 8.2634*** | 0.4151 | 19.9054 | 0.0000 | 7.7564*** | 0.3042 | 25.4949 | 0.0000 | ||
租金条件 | -2.3389*** | 0.2440 | -9.5844 | 0.0000 | 0.2213 | 0.3276 | 0.6756 | 0.4993 | -0.1765 | 0.2628 | -0.6715 | 0.5019 | ||
LAMBDA | 0.9849*** | 0.0006 | 1647.3400 | 0.0000 | 0.9768*** | 0.0006 | 1651.7700 | 0.0000 | 0.9618*** | 0.0010 | 993.3640 | 0.0000 | ||
R-squared:0.9897; AIC:133 755 | R-squared:0.9835; AIC:182 900 | R-squared: 0.9829; AIC:82 114 |
注:表中*、**、***分别表示在0.1、0.05、0.01水平显著。 |
表4 不同业态零售业集聚分异影响因素识别Tab. 4 Identification of influencing factors of agglomeration differentiation in different retail formats |
便利店 | 超市 | 购物商场 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
系数 | 标准差 | t统计值 | p | 系数 | 标准差 | t统计值 | p | 系数 | 标准差 | t统计值 | p | |||
常数项 | 1.5604*** | 0.2959 | 5.2744 | 0.0000 | 2.4298*** | 0.1607 | 15.1206 | 0.0000 | 8.1382*** | 0.1967 | 41.3738 | 0.0000 | ||
人口密度 | 55.6831*** | 3.0559 | 18.2216 | 0.0000 | 11.0070*** | 1.8800 | 5.8548 | 0.0000 | 6.9395* | 3.8914 | 1.7833 | 0.0745 | ||
商务条件 | 0.7780*** | 0.0100 | 77.8535 | 0.0000 | 0.0137*** | 0.0048 | 2.8385 | 0.0045 | 0.0159 | 0.0108 | 1.4705 | 0.1414 | ||
公共交通 便利性 | 1.0040*** | 0.0554 | 18.1375 | 0.0000 | -0.0003 | 0.0281 | -0.0091 | 0.9927 | -0.0795 | 0.0522 | -1.5222 | 0.1280 | ||
业态丰度 | 2.6217*** | 0.1440 | 18.2006 | 0.0000 | 1.0691*** | 0.0875 | 12.2247 | 0.0000 | 1.6330*** | 0.1233 | 13.2476 | 0.0000 | ||
租金条件 | 0.1598* | 0.0824 | 1.9384 | 0.0526 | -0.1993*** | 0.0463 | -4.3016 | 0.0000 | -0.8529*** | 0.0878 | -9.7107 | 0.0000 | ||
LAMBDA | 0.7867*** | 0.0047 | 165.9330 | 0.0000 | 0.5383*** | 0.0237 | 22.7231 | 0.0000 | 0.7342*** | 0.0071 | 102.8850 | 0.0000 | ||
R-squared:0.9303; AICs: 38 557 | R-squared: 0.3597; AICs: 6059 | R-squared: 0.6936; AICs:22 347 | ||||||||||||
专业店 | 食杂店 | |||||||||||||
系数 | 标准差 | t统计值 | p | 系数 | 标准差 | t统计值 | p | |||||||
常数项 | 37.6027*** | 0.7209 | 52.1630 | 0.0000 | -2.0150*** | 0.4382 | -4.5980 | 0.0000 | ||||||
人口密度 | 16.9848*** | 3.3555 | 5.0618 | 0.0000 | 51.7967*** | 3.8062 | 13.6084 | 0.0000 | ||||||
商务条件 | 0.0280*** | 0.0072 | 3.9022 | 0.0001 | 0.5583*** | 0.0113 | 49.5961 | 0.0000 | ||||||
公共交通 便利性 | 5.9755*** | 0.1776 | 33.6397 | 0.0000 | 0.8755*** | 0.0725 | 12.0809 | 0.0000 | ||||||
业态丰度 | 0.5161*** | 0.1643 | 3.1422 | 0.0017 | 2.2431*** | 0.2212 | 10.1418 | 0.0000 | ||||||
租金条件 | 0.2104** | 0.0858 | 2.4520 | 0.0142 | 0.6456*** | 0.1081 | 5.9716 | 0.0000 | ||||||
LAMBDA | 0.9784 | 0.0004 | 2474.7900 | 0.0000 | 0.8171 | 0.0050 | 162.7250 | 0.0000 | ||||||
R-squared: 0.9861; AICs: 279 199 | R-squared: 0.9272; AICs: 25 531 |
注:表中*、**、***分别表示在0.1、0.05、0.01水平显著。 |
[1] |
|
[2] |
闫小培. 大城市商业业态空间研究[M]. 北京: 商务印书馆, 2008.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
许学强, 周素红, 林耿. 广州市大型零售商店布局分析[J]. 城市规划, 2002,26(7):23-28.
[
|
[8] |
于伟, 杨帅, 郭敏, 等. 功能疏解背景下北京商业郊区化研究[J]. 地理研究, 2012,31(1):123-134.
[
|
[9] |
|
[10] |
郭崇义. 便利店区位类型研究——以北京、广州等城市便利店周边环境调研为例[J].商业经济与管理,2005(11):38-44.
[
|
[11] |
柴彦威, 翁桂兰, 沈洁. 基于居民购物消费行为的上海城市商业空间结构研究[J]. 地理研究, 2008,27(4):897-906.
[
|
[12] |
何永达, 赵志田. 我国零售业空间分布特征及动力机制的实证分析[J]. 经济地理, 2012,32(10):77-82.
[
|
[13] |
肖琛, 陈雯, 袁丰, 等. 大城市内部连锁超市空间分布格局及其区位选择——以南京市苏果超市为例[J]. 地理研究, 2013,32(3):465-475.
[
|
[14] |
黄晓冰, 陈忠暖. 基于信息熵的地铁站点商圈零售业种结构的研究——以广州15个地铁站点商圈为例[J]. 经济地理, 2014,34(3):38-44.
[
|
[15] |
王芳, 高晓路, 许泽宁. 基于街区尺度的城市商业区识别与分类及其空间分布格局——以北京为例[J]. 地理研究, 2015,34(6):1125-1134.
[
|
[16] |
王士君, 浩飞龙, 姜丽丽. 长春市大型商业网点的区位特征及其影响因素[J]. 地理学报, 2015,70(6):893-905.
[
|
[17] |
张小英, 巫细波. 广州购物中心时空演变及对城市商业空间结构的影响研究[J]. 地理科学, 2016,36(2):231-238.
[
|
[18] |
浩飞龙, 王士君, 冯章献, 等. 基于POI数据的长春市商业空间格局及行业分布[J]. 地理研究, 2018,37(2):366-378.
[
|
[19] |
饶传坤, 蔡异翔. 杭州市大型零售商业设施的空间扩展特征[J]. 经济地理, 2016,36(2):117-124.
[
|
[20] |
吴康敏, 张虹鸥, 王洋, 等. 广州市零售业态空间分异特征与机制[J]. 热带地理, 2018,38(2):196-207.
[
|
[21] |
吴康敏, 张虹鸥, 王洋, 等. 广州市多类型商业中心识别与空间模式[J]. 地理科学进展, 2016,35(8):963-974.
[
|
[22] |
周艳, 李妍羲, 黄悦莹, 等. 基于社交媒体数据的城市人群分类与活动特征分析[J]. 地球信息科学学报, 2017,19(9):1238-1244.
[
|
[23] |
潘碧麟, 王江浩, 葛咏, 等. 基于微博签到数据的成渝城市群空间结构及其城际人口流动研究[J]. 地球信息科学学报, 2019,21(1):68-76.
[
|
[24] |
王楠, 杜云艳, 易嘉伟, 等. 基于手机信令数据的北京市空间品质时空动态分析[J]. 地球信息科学学报, 2019,21(1):86-96.
[
|
[25] |
周佳颖, 王俊蓉, 张景秋. 微博用户的中国传统节日感知及区域差异研究[J]. 地球信息科学学报, 2019,21(1):77-85.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
徐晓宇, 李梅. 基于开源大数据的北京地区餐饮业空间分布格局[J]. 地球信息科学学报, 2019,21(2):215-225.
[
|
[31] |
胡庆武, 王明, 李清泉. 利用位置签到数据探索城市热点与商圈[J]. 测绘学报, 2014,43(3):314-321.
[
|
[32] |
王芳, 高晓路. 北京市商业空间格局及其与人口耦合关系研究. 城市规划, 2015,39(11):23-29.
[
|
[33] |
王洋, 金利霞, 张虹鸥, 等. 广州市居民住房条件的空间分异格局与形成机制. 地理科学, 2017,37(6):868-875.
[
|
[34] |
李苗裔, 马妍, 孙小明, 等. 基于多源数据时空熵的城市功能混合度识别评价[J]. 城市规划, 2018.
[
|
[35] |
周素红, 郝新华, 柳林. 多中心化下的城市商业中心空间吸引衰减率验证——深圳市浮动车GPS时空数据挖掘[J]. 地理学报, 2014,69(12):1810-1820.
[
|
[36] |
王娟. 基于消费者行为的零售业态演进研究[D]. 长沙:中南大学, 2012.
[
|
[37] |
|
[38] |
陈蔚珊, 柳林, 梁育填. 基于POI数据的广州零售商业中心热点识别与业态集聚特征分析[J]. 地理研究, 2016,35(4):703-716.
[
|
[39] |
陈蔚珊, 柳林, 梁育填. 广州轨道交通枢纽零售业的特征聚类及时空演变[J]. 地理学报, 2015,70(6):879-892.
[
|
[40] |
陈晨, 王法辉, 修春亮. 长春市商业网点空间分布与交通网络中心性关系研究[J]. 经济地理, 2013,33(10):40-47.
[
|
[41] |
|
[42] |
张景秋, 陈叶龙, 孙颖. 基于租金的北京城市办公活动经济空间结构解析[J]. 地理科学, 2010,17(6):833-838.
[
|
[43] |
武文杰, 张文忠, 董冠鹏, 等. 转型期北京住宅用地投标租金曲线的空间形态与演化[J].地理科学,2011(5):520-527.
[
|
[44] |
|
[45] |
|
/
〈 | 〉 |