Journal of Geo-information Science >
Research on Travel Pattern and Network Characteristics of Inter-city Travel in China's Urban Agglomeration during the National Day Week based on Tencent Migration Data
Received date: 2019-11-13
Request revised date: 2020-04-26
Online published: 2020-08-25
Supported by
National Natural Science Foundation of China(41501120)
National Natural Science Foundation of China(41722103)
The Fundamental Research Funds for the Central Universities, SNNU(18SZYB01)
Young Elite Scientists Sponsorship Program by CAS(2019QNRC001)
Copyright
Intercity travel is a time-dependent behavior, which has different spatial characteristics with different time constraints or during different time periods. The patterns of intercity travel and geographical spatial connections revealed by intercity travel could be different with time. However, intercity travel with varying travel time has been studied little so far, in particular for holiday travel. With the booming of holiday tourism, analyzing intercity travel during holidays is of great significance to uncover the spatial movement rules and travel patterns among urban agglomerations. In the era of big data, real-time records of population movement provide a possibility to examine the characteristics of intercity travel in detail. Hence, this paper explores the characteristics, patterns, and structure of intercity travel in 19 urban agglomerations of China during the National Day holiday period (October 1-7) in 2016. The intercity travel data derived from the Tencent Location Big Data and network analysis methods are employed to evaluate intercity travel patterns between urban agglomerations. Using the community detection method, we identify 24 city communities during the National Day holiday, and the directions of intercity travel in urban agglomerations are explored. Results show that intercity travel during this golden week has an obvious timing feature, which is observed as leave period, return period, and journey period receptively. There have formed three intercity travel patterns, namely, hub-and-spoke, polycentric, and monocentric patterns. Meanwhile, the features of intercity travel in the leave period and return period are similar to the Spring Festival, which is characterized by space-time symmetry of population flow. Intercity travel in main urban agglomerations presents a typical long-holiday travel feature, which is characterized by short- and medium- distance travel between core cities and neighboring peripheral cities. While the intercity travel in urban agglomerations in the central and west of China has a typical tidal feature. Based on the population movement records from the Tencent Location Platform, this study has investigated intercity travel features and travel patterns during the National Day holiday in three time periods mentioned above. In addition, our results can provide useful support for intercity traffic management, road resource optimization, and allocation plan in long holidays in China.
LI Tao , WANG Jiaoe , HUANG Jie . Research on Travel Pattern and Network Characteristics of Inter-city Travel in China's Urban Agglomeration during the National Day Week based on Tencent Migration Data[J]. Journal of Geo-information Science, 2020 , 22(6) : 1240 -1253 . DOI: 10.12082/dqxxkx.2020.190686
表1 重力模型拟合结果统计Tab. 1 Statistics of gravity model fitting results |
函数 | 函数公式 | 调整判定系数R2 | |
---|---|---|---|
对内联系 | 幂函数 | Iij=0.1879×OoutiDinj/dij0.706 | 0.510* |
修正幂函数 | Iij=0.2337×Oouti0.689Dinj0.563/dij0.733 | 0763** | |
指数函数 | Iij=0.1110×OoutiDinj/e0.456dij | 0.423 | |
修正指数函数 | Iij=0.1586×Oouti0.563Dinj0.456/e0.533dij | 0.485 | |
对外联系 | 幂函数 | Iij=0.2333×OoutiDinj/dij0.825 | 0.633* |
修正幂函数 | Iij=0.3065×Oouti0.429Dinj0.333/dij0.896 | 0.802** | |
指数函数 | Iij=0.2001×OoutiDinj/e0.700dij | 0.496* | |
修正指数函数 | Iij=0.2045×Oouti0.436Dinj0.433/e0.706dij | 0.502 |
注:*、**分别表示在10%和5%水平上显著。 |
图9 中国城市群对内和对外城际出行网络首位联系空间格局注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2019)1823号的标准地图制作,底图无修改。由于数据获取困难,本次研究不包括香港、台湾和澳门。 Fig. 9 The dominant flow network of inner and outer intercity travel in China's urban agglomerations |
表2 城际出行网络首位联系强度指标统计Tab. 2 Statistical results of dominant flow in intercity travel network 个/(%) |
强联系及占比 | 次强联系及占比 | 弱联系及占比 | 对称联系及占比 | 平均首位 联系强度 | |
---|---|---|---|---|---|
(≥0.6) | (<0.6, ≥0.3) | (<0.3) | (互为首位联系) | ||
对内联系 | 47(21.17) | 102(46.15) | 42(18.92) | 30(13.51) | 0.46 |
对外联系 | 25(11.42) | 139(63.47) | 52(22.42) | 6(2.74) | 0.42 |
[1] |
方创琳. 中国城市群研究取得的重要进展与未来发展方向[J]. 地理学报, 2014,69(8):1130-1144.
[
|
[2] |
李涛, 王姣娥, 高兴川. 中国居民工作日与节假日的城际出行网络异同性研究[J]. 地理学报, 2020,75(4):833-848.
[
|
[3] |
陈明星, 郭莎莎, 陆大道. 新型城镇化背景下京津冀城市群流动人口特征与格局[J]. 地理科学进展, 2018,37(3):363-372.
[
|
[4] |
古恒宇, 沈体雁, 刘子亮, 等. 基于空间滤波方法的中国省际人口迁移驱动因素[J]. 地理学报, 2019,74(2):222-237.
[
|
[5] |
邓羽, 刘盛和, 蔡建明, 等. 中国省际人口空间格局演化的分析方法与实证[J]. 地理学报, 2014,69(10):1473-1486.
[
|
[6] |
|
[7] |
|
[8] |
戴特奇, 金凤君, 王姣娥. 空间相互作用与城市关联网络演进:以我国20世纪90年代城际铁路客流为例[J]. 地理科学进展, 2005,24(2):80-89.
[
|
[9] |
陈伟, 刘卫东, 柯文前, 等. 基于公路客流的中国城市网络结构与空间组织模式[J]. 地理学报, 2017,72(2):224-241.
[
|
[10] |
王姣娥, 景悦. 中国城市网络等级结构特征及组织模式—基于铁路和航空流的比较[J]. 地理学报, 2017,72(8):1508-1519.
[
|
[11] |
|
[12] |
蔡莉丽, 马学广, 陈伟劲, 等. 基于客运交通流的珠江三角洲城市区域功能多中心特征研究[J]. 经济地理, 2013,33(11):52-57.
[
|
[13] |
罗震东, 何鹤鸣, 耿磊. 基于客运交通流的长江三角洲功能多中心结构研究[J].城市规划学刊,2011(2):16-23.
[
|
[14] |
|
[15] |
吴康, 方创琳, 赵渺希, 等. 京津城际高速铁路影响下的跨城流动空间特征[J]. 地理学报, 2013,68(2):159-174.
[
|
[16] |
解利剑, 周素红. 区域一体化下的广州市居民城际通勤特征分析[J].城市观察,2010(4):85-93.
[
|
[17] |
刘望保, 石恩名. 基于ICT的中国城市间人口日常流动空间格局——以百度迁徙为例[J]. 地理学报, 2016,71(10):1667-1679.
[
|
[18] |
魏冶, 修春亮, 刘志敏, 等. 春运人口流动透视的转型期中国城市网络结构[J]. 地理科学, 2016,36(11):1654-1660.
[
|
[19] |
易嘉伟, 杜云艳, 涂文娜. 基于位置大数据的国庆假期青藏高原人群分布时空变化模式挖掘[J]. 地球信息科学学报, 2019,21(9):1367-1381.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
唐佳, 甄峰, 秦萧. 信息时代高铁走廊区域居民活动空间——概念模型与研究框架[J]. 地理研究, 2018,37(9):1789-1801.
[
|
[24] |
潘竟虎, 赖建波. 中国城市间人口流动空间格局的网络分析——以国庆-中秋长假和腾讯迁徙数据为例[J]. 地理研究, 2019,38(7):1678-1693.
[
|
[25] |
|
[26] |
方创琳, 鲍超, 马海涛. 2016中国城市群发展报告[M]. 北京: 科学出版社, 2017.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
许学强, 周一星, 宁越敏. 城市地理学[M]. 北京: 高等教育出版社, 1997.
[
|
[31] |
金凤君. 我国航空客流网络发展及其地域系统研究[J]. 地理研究, 2001,20(1):31-39.
[
|
[32] |
李涛, 张伊娜. 企业关联网络视角下中国城市群的多中心网络比较研究[J]. 城市发展研究, 2017,24(3):116-124.
[
|
/
〈 | 〉 |