Journal of Geo-information Science >
Research on Built-up Area Extraction via Brightness Correction Indexes based on Two Kinds of Nighttime Light Images
Received date: 2020-03-20
Request revised date: 2020-05-12
Online published: 2020-10-25
Supported by
Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University(18T03)
Science and technology project of Inner Mongolia Autonomous Region(2060399-273)
Copyright
Nighttime light data are widely used to monitor human activities from space, such as urban development, population density simulation, energy gas emissions, power consumption, human activities and effects, economic development level, and ecological environment. However, due to road lights and light scattering from water surface, Nighttime Light (NTL) images always contain a lot of background noises. These background noises may greatly limit the application of nighttime light images in built-up area extraction. In our paper, based on high-resolution nighttime light images of Lujia1-01 from China and NPP-VIIRS from the United States in the second half of 2018, the Enhanced Vegetation Index (EVI) Adjusted NTL Index (EANI) and Road Density & EVI Adjusted NTL Index (REANI) were proposed to reduce background noises and applied to built-up area extraction. The EANI and REANI were developed based on the law that the Digital Number (DN) values of the nighttime light images are positively correlated with road density and negatively correlated with the EVI. In this paper, the Xuzhou city of China was selected as the research area. The threshold method was used to extract built-up areas in the main city and the peripheral area from the original LJ1-01 and NPP-VIIRS images, and the images processed by the EANI and the REANI, respectively. The results show that: (1) both EANI and REANI can effectively reduce background noises in nighttime light images. The results extracted from images processed by these two indexes were much better than that from the original NTL images, especially for the low urbanization areas; and (2) LJ1-01 performed better than NPP-VIIRS in built-up area extraction. Due to the higher spatial resolution of LJ1-01 data, the accuracy of extracted built-up areas from LJ1-01 was much higher than that from NPP-VIIRS in low-level urbanization areas, but was about the same with NPP-VIIRS in areas with high urbanization levels. Through error analysis, the relative error of extracted built-up areas from LJ1-01 decreased by about 6%, which indicates that LJ1-01 nighttime light image is promising for future built-up area extraction. Also, both EANI and REANI provide effective tools for the extraction of built-up areas and could be further applied to researches such as urban planning and urban expansion.
YAN Qingwu , LI Fei , LI Ling . Research on Built-up Area Extraction via Brightness Correction Indexes based on Two Kinds of Nighttime Light Images[J]. Journal of Geo-information Science, 2020 , 22(8) : 1714 -1724 . DOI: 10.12082/dqxxkx.2020.200128
图3 研究区预处理后的夜间灯光数据、EVI数据和道路网密度数据Fig. 3 Pre-processed data of NTL, EVI, and Road Density in the study area |
表1 LJ1-01和NPP-VIIRS主要参数Tab. 1 Introduction to Specifications of LJ1-01 and NPP-VIIRS data |
参数 | LJ1-01 | NPP-VIIRS |
---|---|---|
空间分辨率/m | 130 | 500 |
幅宽/km | 250 | 3000 |
光谱范围/ | 0.46~0.98 | 0.5~0.9 |
辐射分辨率/bits | 14 | 14 |
可获取时间段 | 2018年6月至今 | 2012年至今 |
表2 阈值法分区域提取建成区结果Tab. 2 Results of Built-up Areas Extraction by Threshold Value Methods |
区域 | 参数 | LJ1-01 | NPP-VIIRS | |||||
---|---|---|---|---|---|---|---|---|
原始影像 | EANI | REANI | 原始影像 | EANI | REANI | |||
研究区 | 阈值 | 8100 | 3900 | 2200 | 6.5 | 2.85 | 1.56 | |
提取的栅格数/个 | 24 663 | 24 640 | 24 644 | 2489 | 2491 | 2488 | ||
提取面积/hm2 | 44 757.20 | 44 715.80 | 44 725.19 | 44 089.88 | 47 648.23 | 47 618.50 | ||
主城区 | 阈值 | 11 400 | 5950 | 3950 | 9 | 4.1 | 2.7 | |
提取的栅格数/个 | 17 355 | 17 355 | 17 320 | 1775 | 1784 | 1778 | ||
提取面积/hm2 | 31 503.36 | 31 503.13 | 31 439.77 | 31 461.57 | 34 154.06 | 34 039.53 | ||
外围区 | 阈值 | 5780 | 2570 | 1315 | 4.73 | 2.07 | 1.03 | |
提取的栅格数/个 | 6963 | 6954 | 6970 | 713 | 716 | 716 | ||
提取面积/hm2 | 12 619.05 | 12 602.21 | 12 634.82 | 12 610.09 | 13 649.56 | 13 684.48 |
表3 阈值法分区提取建成区误差统计Tab. 3 Error Analysis of Built-up Areas Extraction by Threshold Value Methods |
区域 | LJ1-01 | NPP-VIIRS | ||||||
---|---|---|---|---|---|---|---|---|
原始影像 | EANI | REANI | 原始影像 | EANI | REANI | |||
绝对误差/hm2 | 主城区+外围区 | 16 514 | 16 739 | 15 171 | 19 257 | 19 263 | 17 802 | |
主城区 | 6959 | 7441 | 6911 | 7032 | 7476 | 6929 | ||
外围区 | 9555 | 9298 | 8260 | 12 225 | 11 787 | 10 873 | ||
相对误差/% | 主城区+外围区 | 37.27 | 37.77 | 34.23 | 43.45 | 43.47 | 40.17 | |
主城区 | 22.01 | 23.53 | 21.86 | 22.24 | 23.64 | 21.91 | ||
外围区 | 75.26 | 73.24 | 65.06 | 96.29 | 92.84 | 85.64 |
[1] |
陈颖彪, 郑子豪, 吴志峰, 等. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019,38(2):205-223.
[
|
[2] |
高宁, 盖迎春, 宋晓谕. 基于夜间灯光数据的西安市城市扩张及驱动因素研究[J]. 遥感技术与应用, 2019,34(1):207-215.
[
|
[3] |
|
[4] |
张志刚, 张安明, 郭欢欢. 基于DMSP/OLS夜间灯光数据的城乡结合部空间识别研究—以重庆市主城区为例[J]. 地理与地理信息科学, 2016,32(6):37-42.
[
|
[5] |
李德仁, 余涵若, 李熙. 基于夜光遥感影像的“一带一路”沿线国家城市发展时空格局分析[J]. 武汉大学学报·信息科学版, 2017,42(6):711-720.
[
|
[6] |
王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报·信息科学版, 2018,43(12):2191-2196.
[
|
[7] |
王若曦, 李建, 李熙, 等. DMSP夜间灯光数据与Landsat 数据结合的建成区提取研究——以江西省为例[J]. 华中师范大学学报(自然科学版), 2018,52(1):130-136,146.
[
|
[8] |
邹进贵, 陈艳华, 丁鸽, 等. 利用DMSP/OLS灯光影像提取城镇建成区的聚类阈值法[J]. 武汉大学学报·信息科学版, 2016,41(2):196-201.
[
|
[9] |
|
[10] |
郭忻怡, 闫庆武, 谭晓悦, 等. 基于DMSP/OLS与NDVI的江苏省碳排放空间分布模拟[J]. 世界地理研究, 2016,25(4):102-110.
[
|
[11] |
|
[12] |
赵笑然, 石汉青, 杨平吕, 等. NPP卫星VIIRS微光资料反演夜间PM2.5质量浓度[J]. 遥感学报, 2017,21(2):291-299.
[
|
[13] |
郭恒亮, 杨硕, 赫晓慧, 等. 基于夜间灯光数据的郑州市大气污染暴露强度研究[J]. 河南理工大学学报(自然科学版), 2019,38(3):81-88.
[
|
[14] |
黄杰, 闫庆武, 刘永伟. 基于DMSP/OLS与土地利用的江苏省人口数据空间化研究[J]. 长江流域资源与环境, 2015,24(5):735-741.
[
|
[15] |
|
[16] |
卢秀, 李佳, 段平, 等. 基于夜间灯光和土地利用数据的云南沿边地区GDP空间差异性分析[J]. 地球信息科学学报, 2019,21(3):455-466.
[
|
[17] |
顾鹏程, 王世新, 周艺, 等. 基于时间序列DMSP/OLS夜间灯光数据的GDP预测模型[J]. 中国科学院大学学报, 2019,36(2):188-195.
[
|
[18] |
李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015,44(6):591-601.
[
|
[19] |
卓莉, 张晓帆, 郑璟, 等. 基于EVI指数的DMSP/OLS夜间灯光数据去饱和方法[J]. 地理学报, 2015,70(8):1339-1350.
[
|
[20] |
郭晗. 珞珈一号科学试验卫星[J]. 卫星应用, 2018,79(7):70.
[
|
[21] |
|
[22] |
柴子为, 王帅磊, 乔纪纲. 基于夜间灯光数据的珠三角地区镇级GDP估算[J]. 热带地理, 2015,35(3):379-385.
[
|
[23] |
唐梁博, 崔海山. 基于NPP-VIIRS 夜间灯光数据和Landsat-8 数据的城镇建筑用地提取方法改进:以广州市为例[J]. 测绘与空间地理信息, 2017,40(9):69-73.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
郑子豪, 陈颖彪, 吴志峰, 等. 单元路网长度的DMSP/OLS夜间灯光数据去饱和方法[J]. 遥感学报, 2018,22(1):161-173.
[
|
[28] |
郑洪晗, 桂志鹏, 栗法, 等. 夜间灯光数据和兴趣点数据结合的建成区提取方法[J]. 地理与地理信息科学, 2019,35(2):25-32.
[
|
[29] |
|
[30] |
李文梅, 覃志豪, 李文娟, 等. MODIS NDVI与MODIS EVI的比较分析[J]. 遥感信息, 2016(6):73-78.
[
|
[31] |
李晓香, 张文, 孟令奎. 河南地区VIIRS NDVI与EVI特性对比与分析[J]. 地理空间信息, 2019,17(1):16-19,10.
[
|
[32] |
徐州市人民政府. 徐州市城市总体规划(2007-2020)(2017年修订)[EB/OL]. http://www.xz.gov.cn/zgxz/zwgk/20101117/008004005_197967e6-c1bb-461c-8ac4-a20- 6056eadf0.html, 2019-07-12.
[ Xuzhou Municipal People's Government. Xuzhou City master plan (2007-2020) (revised in 2017)[EB/OL]. http://www.xz.gov.cn/zgxz/zwgk/20101117/008004005_197967e6-c1bb-461c-8ac4-a20- 6056eadf0.html, 2019-07-12.]
|
[33] |
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI)Earth Observations Group (EOG). Version 1 VIIRS day/night band nighttime lights [DB/OL]. https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html, 2019-07-12.
|
[34] |
高分辨率对地观测系统湖北数据与应用中心. 珞珈一号01星夜间灯光产品[DB/OL]. http://59.175.109.173:8888/index.html, 2019-07-12.
[ Hubei Data and Application Center of High Resolution Earth Observation System. Luojia 1-01 nighttime light products [EB/OL]. http://59.175.109.173:8888/index.html, 2019-07-12.]
|
[35] |
钟亮, 刘小生, 杨鹏. SNPP-VIIRS夜间灯光影像去噪方法研究[J]. 测绘通报, 2019(3):21-26.
[
|
[36] |
National Aeronautics and Space Administration (NASA)Level-1 and Atmosphere Archive & Distribution System ( LAADS ) Distributed Active Archive Center ( DAAC ). MYD13A1-MODIS/Aqua vegetation indices monthly L3global 250 m SIN grid[DB/OL]. https://ladsweb.modaps.eosdis.nasa.gov/api/missions-and-measurements/product/MOD13Q1 2019-07-12.
|
[37] |
徐州市统计局. 徐州统计年鉴2019[M]. 北京: 中国统计出版社, 2019.
[ Xuzhou Statistics Bureau. Xuzhou statistical yearbook 2019[M]. Beijing: China Statistics Press, 2019. ]
|
/
〈 | 〉 |