Journal of Geo-information Science >
Study on Estimation Method of Mongolia Grassland Production based on Sparse Samples
Received date: 2019-11-09
Request revised date: 2020-01-31
Online published: 2020-11-25
Supported by
National Natural Science Foundation of China(41971385)
the Strategic Priority Research Program (Class A) of the Chinese Academy of Sciences(XDA2003020302)
the fund program of the Asia Research Center, Mongolia and Korea Foundation for Advanced Studies(P2018-3606)
the Construction Project of the China Knowledge Center for Engineering Sciences and Technology(CKCEST-2019-3-6)
Copyright
Grasslands are one of the most widely distributed land cover vegetation types across the globe. They play a significant role in developing animal husbandry, protecting biodiversity, maintaining soil and water, and keeping ecological balance. Estimating grassland production, a fundamental variable in grassland resource management, is helpful to measure grassland productivity and diagnose its health status. In recent years, the combination of remote sensing and ground measurements into models has become an important method of estimating grassland production. Normally, large number of measurements are required for remote sensing modeling. Mongolia is an example of a traditional grassland animal husbandry country with the largest per capita grassland area in the world and is also part of the China-Mongolia-Russia Economic Corridor under the “Belt and Road” initiative. Constrained by multiple factors of overseas sampling, it is usually difficult to obtain sufficient, accurate, and evenly distributed production samples. Thus, the accuracy of estimation models will be affected. Until now, there is still no effective solutions to get more samples. In this study, a 200-kilometer buffer zone along the China-Mongolia Railway (Mongolia) was taken as the study area. Given the inhomogeneity of grassland distribution and the correlation between the samples, the Point estimation model of BSHADE (P-BSHADE) was introduced. We derived the grassland production dataset in the study area from 2000 to 2019 based on the sample measurements and interpolated samples, and a combination of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Net Photosynthesis (PsnNet) for remote sensing modeling. Our method extrapolated sparse and unevenly distributed sampling points to supplement ground information by spatial interpolation, and used both the measured sample points and interpolated sample points for modeling. Six types of linear models and exponential models were established using above three vegetation indices. Our results show that the accuracy of the optimal model was 80%, higher than that from previous studies. The spatial pattern and interannual variation of grassland production estimated in our study were consistent with previous studies, which further confirmed the accuracy of our results and the feasibility of the interpolation method. Using interpolation method to optimize the data source is an entirely new attempt that improve the accuracy of the model estimation, which could be potentially applied to other overseas regions to monitor grassland resources.
WANG Yanjie , WANG Juanle , WEI Haishuo , ALTANSUKH Ochir , DAVAADORJ Davaasuren , SONOMDAGVA Chonokhuu . Study on Estimation Method of Mongolia Grassland Production based on Sparse Samples[J]. Journal of Geo-information Science, 2020 , 22(9) : 1814 -1822 . DOI: 10.12082/dqxxkx.2020.190675
表1 中蒙铁路沿线(蒙古段)产草量与植被指数相关性分析Tab. 1 Correlation analysis between grassland production along the China-Mongolia railway (Mongolia) and vegetation indices |
要素 | EVI | NDVI | PsnNet |
---|---|---|---|
相关系数 | 0.833** | 0.863** | 0.845** |
P值 | 0.000 | 0.000 | 0.000 |
注:**在置信度(双侧)为0.01时呈显著相关。 |
表2 基于不同建模参数的中蒙铁路沿线(蒙古段)产草量遥感估算模型及精度对比Tab. 2 Estimation models of grassland production along the China-Mongolia railway (Mongolia) based on different vegetation indices and accuracy comparison |
建模参数 | 模型 | 方程 | R2 | Sig. | RMSE/(kg/hm2) | 精度/% |
---|---|---|---|---|---|---|
NDVI | 线性模型 | Y=-12.687+208.515X1 | 0.72 | 0.000 | 56.89 | 75 |
指数模型 | Y=10.074exp(3.897X1) | 0.64 | 0.000 | 42.91 | 80 | |
EVI | 线性模型 | Y=-11.687+316.114X2 | 0.66 | 0.000 | 63.89 | 72 |
指数模型 | Y=10.582exp(5.799X2) | 0.57 | 0.000 | 48.05 | 78 | |
PsnNet | 线性模型 | Y=6.887+2989.807X3 | 0.68 | 0.000 | 81.65 | 69 |
指数模型 | Y=17.236exp(50.095X3) | 0.55 | 0.000 | 60.03 | 73 |
表3 2000—2019年中蒙铁路沿线(蒙古段)产草量统计Tab. 3 Statistics of annual grassland production along the China-Mongolia Railway (Mongolia) from 2000 to 2019 |
年份 | 单产/(kg/hm²) | 总产/104 t |
---|---|---|
2000 | 4063.23 | 1862.97 |
2001 | 4734.25 | 2170.49 |
2002 | 4178.61 | 1915.84 |
2003 | 4603.98 | 2110.93 |
2004 | 4551.33 | 2086.81 |
2005 | 3982.20 | 1825.84 |
2006 | 4721.28 | 2164.76 |
2007 | 3696.65 | 1694.92 |
2008 | 5054.46 | 2317.36 |
2009 | 4741.86 | 2174.14 |
2010 | 4361.11 | 1999.63 |
2011 | 5143.61 | 2358.30 |
2012 | 5790.50 | 2654.97 |
2013 | 5203.05 | 2385.58 |
2014 | 5431.39 | 2490.22 |
2015 | 3758.04 | 1723.11 |
2016 | 5156.34 | 2364.27 |
2017 | 3294.82 | 1510.57 |
2018 | 5092.15 | 2334.79 |
2019 | 4802.51 | 2202.00 |
平均 | 4618.07 | 2117.38 |
[1] |
高黎明, 张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019,21(9):1318-1329.
[
|
[2] |
谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值[J]. 自然资源学报, 2001,16(1):47-53.
[
|
[3] |
赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价[J]. 生态学报, 2004,24(6):1101-1110.
[
|
[4] |
刘兴元, 龙瑞军, 尚占环. 草地生态系统服务功能及其价值评估方法研究[J]. 草业学报, 2011,20(1):167-174.
[
|
[5] |
|
[6] |
刘建红, 黄鑫, 何旭洋, 等. 基于MODIS的青海草原产草量及载畜平衡估算[J]. 草业科学, 2018,35(10):228-237.
[
|
[7] |
|
[8] |
中国国家发展和改革委员会. 建设中蒙俄经济走廊规划纲要[EB/OL]. http://www.ndrc.gov.cn/zcfb/zcfbghwb/201609/t20160912_818326.html, 2016-6-23.
[ National Development and Reform Commission. Planning outline of a China-Russia-Mongolia economic corridor [EB/OL]. http://www.ndrc.gov.cn/zcfb/zcfbghwb/201609/t20 160912_818326.html, 2016-6-23.]
|
[9] |
朱会义, 刘述林, 贾绍凤. 自然地理要素空间插值的几个问题[J]. 地理研究, 2004,23(4):425-432.
[
|
[10] |
林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002,57(1):47-56.
[
|
[11] |
崔晓临, 程贇, 张露, 等. 基于DEM修正的MODIS地表温度产品空间插值[J]. 地球信息科学学报, 2018,20(12):1768-1776.
[
|
[12] |
耿融, 赵康, 伍红玲. 基于GIS的土地利用程度Krining空间插值方法研究[J]. 科技创新与应用, 2014(25):65-66.
[
|
[13] |
朱芮芮, 李兰, 王浩, 等. 降水量的空间变异性和空间插值方法的比较研究[J]. 中国农村水利水电, 2004(7):25-28.
[
|
[14] |
黎阳, 张晶, 李刚勇. 新疆天然草原鲜草产量空间插值制图应用[J]. 草食家畜, 2016(4):50-53.
[
|
[15] |
李冬, 汪传建, 王伟强, 等. 基于采样的草地生物量估算空间插值方法比较研究[J]. 江苏农业科学, 2019,47(2):206-210.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
National Aeronautics and Space Administration (NASA) [DB/OL]. https://ladsweb.modaps.eosdis.nasa.gov, 2019-08-09.
|
[20] |
中国科学院数据云-资源学科创新平台[DB/OL]. http://www.data.ac.cn, 2019-08-09.
[ Resource Discipline Innovation Platform, Data Cloud of CAS [DB/OL]. http://www.data.ac.cn, 2019-08-09.]
|
[21] |
|
[22] |
|
/
〈 | 〉 |