Journal of Geo-information Science >
Error Spatial Distribution Characteristics of TanDEM-X 90 m DEM over China
Received date: 2019-12-02
Request revised date: 2020-02-12
Online published: 2021-02-25
Supported by
Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of land and resources(KF-2018-03-004)
National Natural Science Foundation of China(41974006)
National Natural Science Foundation of China(41941019)
National Natural Science Foundation of China(41790445)
National Natural Science Foundation of China(42074040)
Research project of shenzhen science and innovation commission(KQJSCX20180328093453763)
Research project of shenzhen science and innovation commission(JCYJ20180305125101282)
Copyright
Some topographic factors such as slope, aspect, and land cover may cause errors on TanDEM-X 90 m Digital Elevation Model (DEM) product when collecting and processing of these data. In order to better understand the error distribution and serve the research in this field, the comparison between TanDEM-X 90 m DEM and ICESat/GLA14 DEM was conducted over the entire China. The findings are summarized: ① The average absolute error, Root Mean Square Error (RMSE) and Standard Deviation (STD) of TanDEM-X 90 m DEM over the entire China are about 3.89, 9.03, and 8.85 m, respectively. ② The error increases when the slope increases. The mean absolute error is about 1.29 m and the STD is about 2.84 m when the slope is below 3°. In comparison, the mean absolute error is above 20 m and the STD is about 30 m when the slope is above 25°. ③ For the aspect, the mean value of absolute error in the north-south direction is obviously smaller than that in the east-west direction, indicating the influence of aspect on TanDEM-X 90 m DEM product. ④ For the land cover, the uncultivated land shows the smallest error with the mean absolute error of 1.85 m, while the region covered with snow and glacier show the largest error with the mean absolute error of 12.68 m. Comparisons of the contour map and profile between TanDEM-X 90 m DEM and UAV-derived DEM suggest that the TanDEM-X 90 m DEM can reflect the real topography. However, due to the influence of resolution in some areas, it can not be expressed for some detailed terrains, especially for valley and ridge. The absolute error distribution of TanDEM-X 90 m DEM over the entire China is produced and evaluated based the weights of different influencing factors, which are considered to be reliable. Through the analysis of error distribution map, it is found that the accuracy of TanDEM-X 90 m DEM shows a trend of high in the north and low in the South over the entire mainland of China. In the North China region, the overall accuracy is higher, while the error in the northwest region is smaller, but the overall accuracy in the Central South region is poor. By referring to the relevant data, when using the data of TanDEM to generate DEM, its accuracy has a great relationship with the vegetation coverage rate of the area. High forest coverage rate will seriously affect the coherence of SAR data, and then affect the accuracy of generated DEM.
LI Wenliang , WANG Chisheng , ZHU Wu . Error Spatial Distribution Characteristics of TanDEM-X 90 m DEM over China[J]. Journal of Geo-information Science, 2020 , 22(12) : 2277 -2288 . DOI: 10.12082/dqxxkx.2020.190739
表1 TanDEM -X DEM、GLA14和FROM-GLC的基本参数Tab. 1 Basic parameters of TanDEM-X DEM, GLA14 and FROM-GLC |
数据 | 参考椭球 | 数据格式 | 数据采集方式 | 下载网址 |
---|---|---|---|---|
TanDEM-X DEM | WGS84 | GeoTiff | 合成孔径雷达 | https://download.geoservice.dlr.de/TDM90/ |
ICESAt/GLA14 | Topex/Poseion | .H5 | 激光测高雷达 | https://n5eil01u.ecs.nsidc.org |
FROM-GLC | WGS84 | GeoTiff | Landsat TM ETM+ | http://data.ess.tsinghua.edu.cn/ |
表2 参考椭球基本参数Tab. 2 Basic parameters of reference ellipsoid |
参数 | WGS84 | Topex/Poseion |
---|---|---|
长半轴/m | 6 378 173.0000 | 6 378 136.3000 |
短半轴/m | 6 356 752.3143 | 6 356 751.6006 |
扁率 | 1/298.2572 | 1/298.5270 |
偏心率 | 0.08181 | 0.08182 |
表3 中国区域内TanDEM -X 90 m DEM的整体误差统计Tab. 3 The statistics of overall error of TanDEM-X 90 m DEM in China |
统计点数/个 | 标准差/m | 中误差/m | 绝对误差均值/m | 平均误差/m |
---|---|---|---|---|
209 186 | 8.86 | 9.03 | 3.89 | 1.76 |
表4 中国大陆区域内不同坡度下的TanDEM -X DEM误差统计Tab. 4 Error statistics of TanDEM-X DEM under different slopes in China |
坡度/° | 统计点数/个 | 标准差 /m | 中误差 /m | 绝对误差值 /m | 平均误差 /m |
---|---|---|---|---|---|
0~3 | 139 053 | 2.85 | 2.91 | 1.30 | 0.59 |
3~5 | 20 671 | 6.04 | 6.30 | 3.94 | 1.80 |
5~15 | 33 599 | 11.50 | 12.20 | 7.98 | 4.06 |
15~25 | 10 927 | 19.63 | 20.55 | 14.65 | 6.07 |
25~30 | 2276 | 27.80 | 29.19 | 21.66 | 8.93 |
30~45 | 2308 | 33.68 | 34.99 | 27.39 | 9.52 |
45~90 | 350 | 42.64 | 44.53 | 33.50 | 13.01 |
表5 中国大陆区域内不同坡向影响下的DEM误差统计Tab. 5 DEM error statistics under different slope directions in China |
坡向 | 统计点数/个 | 标准差/m | 中误差 /m | 绝对误差均值/m | 平均误差 /m |
---|---|---|---|---|---|
北 | 39 679 | 8.33 | 8.82 | 3.68 | 2.90 |
东北 | 25 124 | 9.75 | 10.50 | 4.65 | 3.91 |
东 | 19 716 | 9.67 | 10.25 | 4.56 | 3.39 |
东南 | 23 009 | 8.74 | 8.93 | 3.86 | 1.84 |
南 | 34 173 | 7.40 | 7.40 | 3.13 | 0.13 |
西南 | 22 990 | 8.54 | 8.55 | 3.88 | -0.39 |
西 | 19 194 | 9.51 | 9.53 | 4.22 | 0.52 |
西北 | 25 301 | 8.76 | 8.91 | 3.76 | 1.61 |
表6 中国大陆区域内地物覆盖类型与DEM误差统计Tab. 6 The error statistics of the coverage types and DEM in China |
土地分类 | 统计点数 /个 | 标准差 /m | 中误差 /m | 绝对误差均值/m | 平均误差 /m |
---|---|---|---|---|---|
农田 | 44 078 | 4.78 | 4.95 | 2.24 | 1.27 |
森林 | 28 602 | 15.70 | 17.87 | 11.62 | 8.53 |
草地 | 38 956 | 8.84 | 8.88 | 3.99 | 0.86 |
灌木丛 | 672 | 14.12 | 14.69 | 8.32 | 4.09 |
湿地 | 315 | 10.82 | 11.11 | 4.86 | 2.60 |
水体 | 4576 | 13.53 | 13.61 | 6.49 | 1.46 |
苔原 | 14 | 5.48 | 5.29 | 4.06 | 0.24 |
人造地表 | 6110 | 5.79 | 6.10 | 3.27 | 1.92 |
荒地 | 84 628 | 4.95 | 4.95 | 1.86 | 0.14 |
冰川积雪 | 907 | 21.84 | 21.84 | 12.68 | 0.84 |
注:地物覆盖类型图采集于2017年,DEM采集于2015年。 |
表7 无人机及获取的DEM参数Tab. 7 UAV parameters and DEM parameters acquired |
项目 | 参数 |
---|---|
获取途径 | 中遥Y-10 |
巡航速度 | 80 km/h |
飞行高度 | 4000 m |
采集时间 | 2019年11月27日 |
覆盖范围 | 重庆市奉节县新埔村及周围 |
分辨率 | 0.2 m |
图9 验证区域内TanDEM-X 90 m DEM提取的等高线和参考等高线之间的比较Fig. 9 Comparison between the contours extracted from the TanDEM-X 90 m DEM and the reference contour within the verification area |
[1] |
汤国安, 李发源, 刘学军. 数字高程模型教程[M]. 北京: 科学出版社, 2010.
[
|
[2] |
汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014,64(9):1305-1205.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
胡鹏, 吴艳兰, 胡海. 数字高程模型精度评定的基本理论[J]. 地球信息科学学报, 2003,5(3):64-70.
[
|
[10] |
|
[11] |
武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017,19(8):1108-1115.
[
|
[12] |
章皖秋, 刘琦, 岳彩荣. TanDEM-X数据干涉地形信息精度分析[J]. 林业调查规划, 2017,42(1):1-6.
[
|
[13] |
高志远, 谢元礼, 王宁练, 等. 青藏高原地区3种全球DEM精度对不同地形因子的响应[J]. 水土保持通报, 2019,39(2):184-191.
[
|
[14] |
杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学, 2013,38(4):887-897.
[
|
[15] |
胡加佩, 关小荣, 刘学军. 中国区域SRTM DEM与ASTER GDEM误差空间分布特征[J]. 地理与地理信息科学, 2017,33(4):28-33.
[
|
[16] |
刘爱利. 基于1:100万DEM的我国地形地貌特征研究[D]. 西安:西北大学, 2004.
[
|
[17] |
李炳元, 潘保田, 程维明, 等. 中国地貌区划新论[J]. 地理学报, 2013,68(3):5-10.
[
|
[18] |
德国宇航局地球观察中心. (https://download.geoservice.dlr.de/TDM90/).
[ Earth Observation Center, DLR. (https://download.geoservice.dlr.de/TDM90/). ]
|
[19] |
国家冰雪数据中心. (https://n5eil01u.ecs.nsidc.org).
[ National Snow and Ice Data Center. (https://n5eil01u.ecs.nsidc.org).]
|
[20] |
清华大学地球系统科学系. (http://data.ess.tsinghua.edu.cn/).
[ Department of Earth System Science,.tsinghua University. (http://data.ess.tsinghua.edu.cn/).]
|
[21] |
|
[22] |
|
[23] |
关小荣. SRTM DEM和ASTER GDEM误差的空间分布特征[D]. 南京:南京师范大学, 2017.
[
|
[24] |
张重阳. 基于GLAS数据的广义高程控制点库的建设与应用[D]. 沈阳:辽宁工程技术大学, 2015.
[
|
[25] |
宗继彪, 叶庆华, 田立德. 基于ICESat/GLAS,SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000-2010年)[J]. 科学通报, 2014(21):2108-2118.
[
|
[26] |
杜亚男, 冯光财, 李志伟, 等. TerraSAR-X/TanDEM-X获取高精度数字高程模型技术研究[J]. 地球物理学报, 2015(9):3089-3102.
[
|
[27] |
|
/
〈 | 〉 |