Journal of Geo-information Science >
Multi-scenario Simulation of Land Use Change Along China-Pakistan Economic Corridor through Coupling FLUS Model with SD Model
Received date: 2019-10-20
Request revised date: 2020-01-11
Online published: 2021-02-25
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19030303)
National Natural Science Foundation of China(41631180)
National Natural Science Foundation of China(41801370)
National Natural Science Foundation of China(41701433)
135 Strategic Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences(SDS-135-1708)
Copyright
Planning and construction of China-Pakistan Economic Corridor (CPEC) is inseparable from the scientific cognition of the spatial patterns and changing processes of land resources and eco-environment in this area. Land Use and Land Cover Change (LUCC) simulation can provide reliable prediction data for regional land resources management, eco-environment sustainability, and eco-environment risk assessment. In this paper, based on the coupled System Dynamics Model (SD) and future Land Use Simulation Model (FLUS), combined with the China-Pakistan Economic Corridor construction and regional eco-environment policies, various scenarios were set up to simulate the land use change of the China-Pakistan Economic Corridor, taking full advantages of the two models in macro land demand simulation and micro land allocation. Firstly, the SD-FLUS model was constructed and validated using the historical data of CPEC in 2009-2015. Then the land use changes from 2016 to 2030 under three different scenarios, namely Baseline Development (BD)scenario, Investment Priority Oriented (IPO) scenario, and Harmonious Development (HD) scenario, were simulated. Results show that: (1) The relative error of demand simulation was less than 9%, and the overall accuracy and Kappa coefficient of the simulation were over 90% against the actual land use data in 2015, which indicates the SD-FLUS coupling model effectively reflected the land use change pattern of the China-Pakistan Economic Corridor. The model could be used for further simulation of land use changes in CPEC under different scenarios; (2) There are significant differences in simulated land use under different scenarios until 2030. Construction land expanded under all three scenarios but at different speeds. The expansion speed of HD scenario was in the middle. Under this scenario, the construction land in Kashgar and Pakistan increased by 235.17 km2 and 4942.80 km2, respectively. The expansion speed under the IPO scenario was the fastest, with the construction land in Kashgar increased by 265.23 km2 and construction land in Pakistan increased by 5918.91 km2. Under the BD scenario, the construction land in Kashgar and Pakistan increased by 163.71 km2 and 2861.84 km2, respectively. Under the HD scenario, increment of Pakistan's cultivated land area was less than half of that under BD scenario. Kashgar's cultivated land area increased the most in IPO scenario (about 882.54 km2), which was about three quarters of that in the HD scenario. The forest land was effectively restored only under the HD scenario. Generally, the HD scenario taking both social-economic development and eco-environment protection into account is the most ideal scenario among the three scenarios. Our simulation results can provide useful data support for the construction of China-Pakistan Economic Corridor and the assessment of eco-environment in the future.
ZHANG Xiaorong , LI Ainong , NAN Xi , LEI Guangbin , WANG Changbo . Multi-scenario Simulation of Land Use Change Along China-Pakistan Economic Corridor through Coupling FLUS Model with SD Model[J]. Journal of Geo-information Science, 2020 , 22(12) : 2393 -2409 . DOI: 10.12082/dqxxkx.2020.190618
表1 本文所使用的主要数据清单Tab.1 List of data used in this study |
类别 | 数据名称 | 时间 | 数据属性/ 空间分辨率 | 数据来源 | 数据用途 |
---|---|---|---|---|---|
土地利用 | 土地利用数据 | 2009—2015 | 栅格/300 m | Climate Change Initiative-Land Cover (CCI-LC)[24] | SD、FLUS模型的输入数据和验证数据 |
社会经济 | 人口密度 | 2010 | 栅格/100 m | WorldPop[25] | FLUS模型输入数据 |
GDP | 2010 | 栅格/1 km | Global Risk Data Platform[26] | 同上 | |
人口统计数据 | 2009—2015 | 统计数据 | 喀什地区统计年鉴、巴基斯坦统计年鉴、联合国开发计划署[27] | SD模型的构建 | |
GDP统计数据 | 2009—2015 | 统计数据 | 同上 | 同上 | |
基础地理 信息 | 居民点 | 2012 | 矢量 | 南亚资源环境数据库(课题组提供) | FLUS模型输入数据 |
路网 | 矢量 | 同上 | 同上 | ||
河流 | 矢量 | 同上 | 同上 | ||
地形 | DEM | 2007 | 栅格/30m | 美国国家航空航天局[28] | FLUS模型输入数据 |
坡度 | 由DEM计算获得 | 同上 | |||
坡向 | 同上 | 同上 | |||
土壤 | 土壤PH | 2013 | 栅格/250m | World Soil Information[29] | FLUS模型输入数据 |
含沙量 | 同上 | ||||
土壤深度 | 同上 | ||||
有机碳含量 | 同上 | ||||
气候 | 年均温 | 1985—2015 | 矢量 | 美国国家气象数据中心[30] | FLUS模型输入数据 |
年降雨 | 1985—2015 | 矢量 | 同上 | 同上 |
表2 IPCC-SERS相关情景描述Tab.2 Scenarios description of IPCC-SERS |
排放情景 | 情景描述 |
---|---|
IPCC-SERS A2 | 高排放情景,人类活动加剧,温室气体的排放加快,气温和降水均快速增加 |
IPCC-SERS A1B | 中等排放情景,气温和降水在3种情景中呈现中等增加趋势 |
IPCC-SERS B1 | 低排放情景,气温和降水等维持当前的变化趋势 |
表3 2016—2030年CPEC不同发展情景参数设置Tab.3 The parameter setting of different developing scenarios for CPEC from 2016 to 2030 |
情景 | 变量 | 喀什地区 | 巴基斯坦 |
---|---|---|---|
惯性发展 | 人口增长率 | [46] | |
GDP增长率 | 12%线性下降至6% | 保持5% | |
年降雨变化/(mm/a) | 0.100 | -0.089 | |
年均温变化/(℃/a) | 0.020 | 0.024 | |
技术创新/% | 0.30 | 1.50 | |
投资优先 | 人口增长率 | 1.5% | 保持1.9% |
GDP增长率 | 12% | 5%线性增长到10% | |
年降雨变化/(mm/a) | 0.750 | 0.173 | |
年均温变化/(℃/a) | 0.040 | 0.051 | |
技术创新/% | 0.50 | 2.00 | |
和谐发展 | 人口增长率 | 1.5%线性下降到1.0% | 1.9%线性下降到1.7% |
GDP增长率 | 12%线性下降到10% | 5%线性增长到9% | |
年降雨变化/(mm/a) | 0.125 | 0.126 | |
年均温变化/(℃/a) | 0.030 | 0.041 | |
技术创新/% | 0.50 | 2.00 |
注:,其中r(x)是人口为x时的人口增长率,r为固有人口增长,x为当前人口数,xmax为区域可容纳的最大人口数量为xmax。当人口达xmax时,人口不在增长,通过求解微分方程可得当年人口及其增长率[46]。 |
[1] |
丁思洋, 朱文泉, 江源, 等. 基于RS与GIS的中巴经济走廊生态现状评价[J]. 北京师范大学学报(自然科学版), 2017,53(3):358-365.
[
|
[2] |
王会芝, 惠之凡, 徐鹤. “中巴经济走廊”建设生态环境风险分析与应对策略[J]. 河海大学学报(哲学社会科学版), 2017,19(1):65-68.
[
|
[3] |
刘卫东, Michael Dunford, 高菠阳. “一带一路”倡议的理论建构——从新自由主义全球化到包容性全球化[J]. 地理科学进展, 2017,36(11):1321-1331.
[
|
[4] |
|
[5] |
雷光斌. 山地土地覆被遥感自动制图与监测方法研究[D]. 北京:中国科学院大学, 2016.
[
|
[6] |
刘甲红, 徐露洁, 潘骁骏, 等. 土地利用/土地覆盖变化情景模拟研究进展[J]. 杭州师范大学学报(自然科学版), 2017,16(5):551-560.
[
|
[7] |
|
[8] |
田贺, 梁迅, 黎夏, 等. 基于SD模型的中国2010―2050年土地利用变化情景模拟[J]. 热带地理, 2017,37(4):547-561.
[
|
[9] |
|
[10] |
|
[11] |
何春阳, 史培军, 陈晋, 等. 基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J]. 中国科学(D辑):地球科学), 2005,35(5):464-473.
[
|
[12] |
黎夏, 刘小平. 基于案例推理的元胞自动机及大区域城市演变模拟[J]. 地理学报, 2007,62(10):1097-1109.
[
|
[13] |
刘小平, 黎夏, 艾彬, 等. 基于多智能体的土地利用模拟与规划模型[J]. 地理学报, 2006,61(10):1101-1112.
[
|
[14] |
余强毅, 吴文斌, 唐华俊, 等. 复杂系统理论与Agent模型在土地变化科学中的研究进展[J]. 地理学报, 2011,66(11):1518-1530.
[
|
[15] |
|
[16] |
|
[17] |
严冬, 李爱农, 南希, 等. 基于Dyna-CLUE改进模型和SD模型耦合的山区城镇用地情景模拟研究——以岷江上游地区为例[J]. 地球信息科学学报, 2016,18(4):514-525.
[
|
[18] |
戴尔阜, 马良. 土地变化模型方法综述[J]. 地理科学进展, 2018,37(1):152-162.
[
|
[19] |
王其藩. 系统动力学理论与方法的新进展[J]. 系统管理学报, 1995(2):6-12.
[
|
[20] |
|
[21] |
梁友嘉, 徐中民, 钟方雷. 基于SD和CLUE-S模型的张掖市甘州区土地利用情景分析[J]. 地理研究, 2011,30(3):564-576.
[
|
[22] |
张亚飞, 廖和平, 李义龙. 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, 2019,28(4):757-767.
[
|
[23] |
彭洁. 中巴经济走廊生态脆弱性遥感综合评估[D]. 北京:中国科学院大学, 2017.
[
|
[24] |
WorldPop. High resolution population distribution maps[DB/OL]. https://www.worldpop.org/.
|
[25] |
ESA. Climate change initiative-land cover[DB/OL]. http://maps.elie.ucl.ac.be/CCI/viewer/download.php.
|
[26] |
Global Risk Data Platform. Gross domestic product[DB/OL]. http://preview.grid.unep.ch.
|
[27] |
UNDP. Climate change initiative-land cover[DB/OL]. https://population.un.org/wup/.
|
[28] |
|
[29] |
|
[30] |
NCDC. Climate data online[DB/OL]. https://www.ncdc.noaa.gov/.
|
[31] |
喀什地区发展和改革委员会. 喀什地区国民经济与社会发展第十三个五年计划纲要[M]. 2018.
[ Development and Reform Commission of Kashgar. Outline of the 13th Five-Year Plan for national economic and social development of Kashgar[M]. 2018. ]
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
FAO. FAO statistical yearbook 2012: World food and agriculture[M]. Rome: FAO Inter-Departmental Working Group, 2013.
|
[41] |
Government of Pakistan. Long term plan for China-Pakistan economic corridor (2017-2030). https://www.pc.gov.pk/uploads/cpec/LTP.pdf.
|
[42] |
|
[43] |
|
[44] |
|
[45] |
许崇海, 徐影, 罗勇. 新疆地区21世纪气候变化分析[J]. 沙漠与绿洲气象, 2008,2(3):1-7.
[
|
[46] |
王学保, 蔡果兰. Logistic模型的参数估计及人口预测[J]. 食品科学技术学报, 2009,27(6):75-78.
[
|
[47] |
吴欣昕, 刘小平, 梁迅, 等. FLUS-UGB多情景模拟的珠江三角洲城市增长边界划定[J]. 地球信息科学学报, 2018,20(4):532-542.
[
|
[48] |
|
[49] |
周浩, 雷国平, 杨雪昕, 等. RCPs气候情景下三江平原典型流域耕地动态模拟[J]. 农业机械学报, 2017,48(10):121-133.
[
|
[50] |
朱寿红, 舒帮荣, 马晓冬, 等. 基于“反规划”理念及FLUS模型的城镇用地增长边界划定研究——以徐州市贾汪区为例[J]. 地理与地理信息科学, 2017,33(5):80-86.
[
|
[51] |
|
[52] |
|
[53] |
|
[54] |
孟成, 卢新海, 彭明军, 等. 基于Markov-C 5.0的CA城市用地布局模拟预测方法[J]. 中国土地科学, 2015(6):82-88.
[
|
[55] |
|
[56] |
|
[57] |
祝卓. 空间冲突的演变特征及影响效应——以长株潭城市群为例[J]. 地理科学进展, 2012,31(6):717-723.
[
|
[58] |
赵丹阳. 松花江流域城镇空间扩展的生态环境效应[D]. 北京:中国科学院大学, 2017.
[
|
/
〈 | 〉 |