Journal of Geo-information Science >
Modeling and Application of Epidemic Risk Assessment Considering Spatial Interaction of Spatial-temporal Objects
Received date: 2020-07-30
Revised date: 2020-10-19
Online published: 2021-04-25
Supported by
National Key Research and Development Program of China(2016YFB0502300)
Copyright
Coronavirus Disease 2019 (COVID-19) is still spreading all over the world. According to the early diffusion characteristics of covid-19 in China, From the perspective of geography, an epidemic risk assessment model considering spatial interaction of spatial-temporal objects was constructed. which realizes the correlation and dynamic analysis of the inter city transmission of epidemic risk on the basis of referring to the transfer mode of spatial interaction of spatial-temporal objects, and took into account the spatial-temporal process, spatial dependence and spatial heterogeneity. In the stage of empirical research, the epidemic risk and its dynamic evolution in Wuhan and its surrounding cities from early January 2020 to early April 2020 were evaluated based on this model. Compared with the real-time epidemic risk index and its spatial distribution calculated based on the urban object's own attributes, the effectiveness of the spatial interaction model based on spatial-temporal objects in epidemic risk assessment was verified. The results show that: on the one hand, The model took into account the spatial dependence and heterogeneity of epidemic transmission, and reflected the transmission process between cities of epidemic risk. It provides a new perspective and method for the study of epidemic risk assessment and related spatial problems. On the other hand, there is a significant positive correlation between the input epidemic risk from source objects and the spatial interaction intensity between objects. Therefore, comprehensive decision-making should be made in combination with the main influencing factors of spatial interaction in epidemic prevention and control.
WEI Yuanyuan , JIANG Nan , CHEN Yunhai , LI Xiang , YANG Zhenkai . Modeling and Application of Epidemic Risk Assessment Considering Spatial Interaction of Spatial-temporal Objects[J]. Journal of Geo-information Science, 2021 , 23(2) : 274 -283 . DOI: 10.12082/dqxxkx.2021.200415
表1 2020年1月23日前武汉市主要人口流向及相关城市基本情况Tab.1 Main outflow cities of Wuhan population and their basic situation before January 23, 2020 |
城市 | 人口/万人 | 2019年GDP/亿元 | 通勤方式 | 用时/h | 铁路线距离/km | 占武汉迁出人口比例/% |
---|---|---|---|---|---|---|
孝感市 | 481.45 | 2301.40 | 高铁 | 0.50 | 126 | 13.87 |
黄冈市 | 750.00 | 2322.73 | 动车 | 0.42 | 50 | 13.50 |
荆州市 | 569.17 | 2516.48 | 动车 | 1.63 | 240 | 7.17 |
咸宁市 | 246.26 | 1594.98 | 高铁 | 0.40 | 85 | 4.77 |
襄阳市 | 550.03 | 4812.84 | 高铁 | 1.51 | 281 | 4.44 |
荆门市 | 287.37 | 2033.77 | 特快 | 3.37 | 256 | 3.76 |
黄石市 | 242.93 | 1767.19 | 动车 | 1.13 | 105 | 3.74 |
随州市 | 216.22 | 1162.23 | 高铁 | 1.00 | 162 | 3.54 |
鄂州市 | 104.87 | 1140.07 | 动车 | 0.37 | 56 | 3.28 |
仙桃市 | 154.30 | 868.47 | 动车 | 1.00 | 77 | 3.23 |
宜昌市 | 405.97 | 4460.82 | 动车 | 2.33 | 323 | 3.05 |
天门市 | 127.23 | 650.82 | 动车 | 0.95 | 114 | 2.28 |
十堰市 | 334.08 | 2012.72 | 高铁 | 2.00 | 460 | 2.00 |
恩施州 | 329.03 | 1159.37 | 动车 | 4.02 | 526 | 1.83 |
潜江市 | 96.20 | 812.63 | 高铁 | 0.80 | 134 | 1.19 |
[1] |
|
[2] |
|
[3] |
|
[4] |
邹霞. 具有时空时滞的非局部扩散SIR模型的行波解[J]. 应用数学和力学, 2018,39(5):611-630.
[
|
[5] |
俞建康, 何芳, 陈袁芳, 等. 顾及空间异质性的温州市COVID-19疫情预测[J]. 地理空间信息, 2020,18(8):1-6,141.
[
|
[6] |
王丽. 2003年中国SARS传播空间格局及人口流动驱动因子研究[D]. 北京:中国科学院大学, 2016.
[
|
[7] |
刘张, 千家乐, 杜云艳, 等. 基于多源时空大数据的区际迁徙人群多层次空间分布估算模型——以COVID-19疫情期间自武汉迁出人群为例[J]. 地球信息科学学报, 2020,22(2):147-160.
[
|
[8] |
周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015,34(2):129-131.
[
|
[9] |
华一新, 周成虎. 面向全空间信息系统的多粒度时空对象数据模型描述框架[J]. 地球信息科学学报, 2017,19(9):1142-1149.
[
|
[10] |
张政, 华一新, 张晓楠, 等. 多粒度时空对象关联关系基本问题初探[J]. 地球信息科学学报, 2017,19(9):1158-1163.
[
|
[11] |
张江水, 华一新, 李翔. 多粒度时空对象建模的基本内容与方法[J]. 地理信息世界, 2018,25(2):12-16.
[
|
[12] |
蒋秉川, 游雄, 李科, 等. 利用地理知识图谱的COVID-19疫情态势交互式可视分析[J]. 武汉大学学报·信息科学版, 2020,45(6):836-845.
[
|
[13] |
潘理虎, 秦世鹏, 李晓文, 等. COVID-19病毒防控多智能体仿真模型[J/OL]. 系统仿真学报, 1-15. https://doi.org/10.16182/j.issn1004731x.joss.20-0312. 2020-08-25.
[
|
[14] |
薛景丽. 基于GIS和SEM的城市空间相互作用测度方法研究[D]. 北京:中国地质大学(北京), 2012.
[
|
[15] |
|
[16] |
|
[17] |
徐爱功, 车莉娜. 一种新的时空过程模型建模方法[J]. 测绘科学, 2013,38(6):60-63.
[
|
[18] |
|
[19] |
中国—世界卫生组织新型冠状病毒肺炎(COVID-19)联合考察组. 中国-世界卫生组织新型冠状病毒肺炎(COVID-19)联合考察报告[R]. 北京:中华人民共和国国家卫生健康委员会, 2020.
[ China - WHO novel coronavirus pneumonia (COVID-19) joint investigation group. China - WHO novel coronavirus pneumonia (COVID-19) joint investigation report[R]. Beijing: National Health Commission of the people's Republic of China, 2020. ]
|
[20] |
|
[21] |
|
[22] |
李辉智, 易大莉, 李高明. 重庆市新型冠状病毒肺炎疫情风险分区分级评估方法比较研究[J/OL]. 重庆医科大学学报, 1-7. https://doi.org/10.13406/j.cnki.cyxb.002564. 2020-08-23.
[
|
[23] |
|
[24] |
喻孜, 张贵清, 刘庆珍, 等. 基于时变参数-SIR模型的COVID-19疫情评估和预测[J]. 电子科技大学学报, 2020,49(03):357-361.
[
|
[25] |
|
[26] |
余锦芬, 宋玉凯, 费菲, 等. 基于机器学习和动力学模型的湖北省新型冠状病毒肺炎疫情分析[J/OL]. 生物医学工程研究, 1-5. http://kns.cnki.net/kcms/detail/37.1413.R.20200422.1303.002.html. 2020-09-14.
[
|
[27] |
湖北省统计局. 湖北统计年鉴2019[M]. 北京: 中国统计出版社, 2019.
[ Hubei Provincial Bureau of Statistics. Hubei statistical yearbook-2019[M]. Beijing: China Statistics Press, 2019. ]
|
[28] |
http://search.huochepiao.com/chaxun/resultc.asp?txtCheci=D2&cc.x=0&cc.y=0.
|
[29] |
百度迁徙-百度地图慧眼.[DB/OL]. https://qianxi.baidu.com/2020. 2020-05-08.
[ Baidu migration - Baidu map insight.[DB/OL]. https://qianxi.baidu.com/2020. 2020-05-08. ]
|
[30] |
澎湃新闻“美数课”. 新增确诊新型冠状病毒肺炎数据.[DB/OL]. https://github.com/839-Studio/Novel-Coronavirus-Updates. 2020-04-19.
[ MEISHUKE column of surging news. New diagnostic data of covid-19.[DB/OL]. https://github.com/839-Studio/Novel-Coronavirus-Updates. 2020-04-19. ]
|
/
〈 | 〉 |