Journal of Geo-information Science >
Periodic Optimization of Drug Purchase Needs on Site for Chronic Diseases under the Epidemic Prevention and Control
Received date: 2020-04-22
Revised date: 2020-07-06
Online published: 2021-04-25
Supported by
National key research and development program of China(2017YFB0503802)
the Fundamental Research Funds for the Central Universities(2042020kfxg24)
Copyright
The spread of respiratory diseases among people is likely to cause large-scale public health events. During the epidemic prevention and control period, the risk of infection caused by the accumulation of drug purchase can be effectively controlled and reduced by restricting the time cycle of drug purchase. This paper focuses on the drug purchase needs of patients with chronic diseases at the early stage of closure and resumption of work in the epidemic prevention and control period and proposes an optimization method for the time cycle of drug purchase according to the scene in the drugstore. First of all, according to the principle of "no drug purchase across districts" during the epidemic prevention and control period in Wuhan, the possible service relationship between the drugstore and the community was constructed through a complex network model. Then, based on the order data of Shared bikes, the attenuation law of the drug flow along with the distance was extracted, and on this basis, the distribution mechanism of the drug flow in the community was established among the drugstores providing services for it, so as to determine the customer arrival rate at the pharmacy side and realize the coupling of the spatial distribution characteristics of the community and the pharmacy with the queuing theory model. Additionally, the discrete event simulation method was used to simulate the system state under different time cycles of drug purchase. Finally, based on the simulation results, the optimal time cycle was found by using dichotomy to maximize the consideration of patients' demands for drugs and the utilization rate of drugstores. In our study, we took Wuhan central city as an example. First, the number of patients with various chronic diseases was estimated through conditional probability, and then the optimal drug purchase cycle was obtained by using the above method for 28 days. Under the optimal time cycle, the patient's average waiting time was 8.55 min, close to the optimal duration of waiting, and the vast majority of purchasing medicine needs can be met. Also, drugstores can be fully used (More than 87% of drugstores were busy), and the daily stock quantity of drugstores was not more than 100 (bottle or box), which was within the drugstore's capacity. The methods and conclusions of this paper can be used to guide the purchasing decisions of patients with chronic diseases and the preparation of chronic diseases in drugstores.
WANG Xiaofan , FANG Zhixiang , ZHONG Haoyu , ZOU Xinyan . Periodic Optimization of Drug Purchase Needs on Site for Chronic Diseases under the Epidemic Prevention and Control[J]. Journal of Geo-information Science, 2021 , 23(2) : 307 -317 . DOI: 10.12082/dqxxkx.2021.200189
表3 建筑物属性信息示例Tab. 3 The data sample of building |
FID | 楼层数 | 建筑面积/m2 |
---|---|---|
0 | 16 | 1267.8 |
1 | 16 | 18 485.4 |
2 | 16 | 10 595.3 |
… | … | … |
表4 小区属性信息示例Tab. 4 The data sample of community |
FID | 小区名称 | 人口数/人 |
---|---|---|
1 | 027社区 | 5939 |
2 | 08经典 | 5619 |
3 | 122社区冶建花园东区 | 7567 |
… | … | … |
表5 药店属性信息示例Tab. 5 The data sample of drugstore |
城区 | 名称 | X | Y | 地址 |
---|---|---|---|---|
洪山区 | 美佳康大药房(钢花南苑东南) | … | … | 友谊大道1062号附近 |
汉阳区 | 中联大药房(江城明珠店) | … | … | 四新地区管委会四新南路江城大道江城明珠 |
江汉区 | 武汉城镇职工医疗保险定点药店 | … | … | 新湾五路与新湾路交叉口东150 m |
表6 共享单车骑行订单属性信息示例Tab. 6 The data sample of sharing bike orders |
订单编号 | 用户ID | 单车ID | 起点X | 起点Y | 终点X | 终点Y |
---|---|---|---|---|---|---|
275 | 29360203 | 1477421 | … | … | … | … |
292 | 48853194 | 1477421 | … | … | … | … |
317 | 65913653 | 1477639 | … | … | … | … |
表7 不同患病情况的出现概率及患者数量Tab. 7 Probability and relevant number of patients under different diseases condition |
患病情况 | 概率标记 | 概率取值 | 患病人数/万人 |
---|---|---|---|
仅患有高血压 | 0.14921 | 149.21 | |
仅患有糖尿病 | 0.06050 | 60.50 | |
仅患有冠心病 | 0.01370 | 13.70 | |
同时患有高血压和糖尿病 | P(AB) | 0.04200 | 42.00 |
同时患有高血压和冠心病 | P(AC) | 0.03780 | 37.80 |
同时患有糖尿病和冠心病 | P(BC) | 0.01701 | 17.01 |
同时患有高血压、 糖尿病和冠心病 | P(ABC) | 0.01451 | 14.51 |
总计 | 0.33473 | 334.73 |
表8 基于排队论和事件仿真方法的队列特征值对比Tab. 8 Queue eigenvalue comparison between queuing theory and event simulation method |
平均队列长度L/人 | 人均等待时长W/min | |
---|---|---|
Little公式 | 0.17 | 6.18 |
仿真结果 | 0.10 | 3.80 |
表9 2种最优购药周期的仿真结果对比Tab. 9 Simulation results under two optimal drug purchase cycles |
模型 | 购药周期/d | 服务人数/人 | 繁忙时间占比/% | 药品备货量/瓶或盒 | 顾客等待时长/min |
---|---|---|---|---|---|
排队论 | 71 | 86.68 | 90.29 | 38 | 3.85 |
仿真 | 28 | 92.61 | 96.47 | 94 | 8.55 |
图7 需求未被满足的慢性病患者数量的空间分布Fig. 7 Spatial distribution of the number of chronic diseases with unmet needs |
表10 基于未满足需求患者数的小区数量分级统计Tab. 10 The number of communities under different level of unmet drug demands |
城区 | 1~5/个 | 6~10/个 | 11~15/个 | ≥16/个 | 小区数总计/个 |
---|---|---|---|---|---|
东西湖区 | 17 | 1 | 3 | 1 | 22 |
汉阳区 | 17 | 3 | 2 | 8 | 30 |
洪山区 | 44 | 1 | 2 | 7 | 54 |
江岸区 | 26 | 2 | 0 | 7 | 35 |
江汉区 | 17 | 1 | 1 | 3 | 22 |
硚口区 | 12 | 0 | 3 | 12 | 27 |
青山区 | 7 | 0 | 0 | 2 | 9 |
武昌区 | 23 | 4 | 3 | 8 | 38 |
[1] |
华春彬. 浅谈呼吸道传染病的特点及预防与控制[J]. 医学动物防制, 2012,28(3):333-334.
[
|
[2] |
徐田梅. 冬春季呼吸道传染病的预防与控制[J]. 中国卫生产业, 2012(8):180.
[
|
[3] |
中国日报. 有序推动复工复产.[EB/OL]. http://cn.chinadaily.com.cn/a/202002/23/html, 2020-02-23.
[ China Daily. Promote orderly resumption of work and production[EB/OL]. http://cn.chinadaily.com.cn/a/202002/23/WS5e51ea7ca3107bb6b57a1a10.html, 2020-02-23.
|
[4] |
陈少红, 王建丽. 慢性病患者用药的依赖性探讨[J]. 中国临床医药研究杂志, 2003(109):11492-11493.
[
|
[5] |
顾东风, 江河, 吴锡桂, 等. 中国成年人主要死亡原因及其危险因素[J]. 中国慢性病预防与控制, 2006,14(3):149-154.
[
|
[6] |
邓方安, 刘三阳. 市场供求平衡中的模糊模型[J]. 西安电子科技大学学报, 2002,29(2):284-288.
[
|
[7] |
林晗. 煤炭市场供需平衡分析及对策研究[D]. 大连:大连海事大学, 2006.
[
|
[8] |
孙静春, 吕丁, 袁治平, 等. 燃料价格对城市车用天然气供需平衡的仿真分析[J]. 系统工程理论与实践, 2008,28(2):43-51.
[
|
[9] |
李朴, 欧文斌, 叶苓, 等. 基于排队论模型的口腔科门诊医师配置量化分析[J]. 医学研究生学报, 2014,27(8):863-865.
[
|
[10] |
朱志良, 邱媛源, 李丹程, 等. 一种Web服务复杂网络的构建方法[J]. 小型微型计算机系统, 2012,33(2):199-205.
[
|
[11] |
刘国仗, 于汇民. 高血压合并糖尿病的治疗[J]. 中国心血管杂志, 2002,7(2):84-89.
[
|
[12] |
孙言凤, 李静娜, 吴晓旻, 等. 武汉市某地区居民健康状况及危险因素调查[J]. 医学动物防制, 2014,30(2):183-185.
[
|
[13] |
金春花, 李连喜, 李梅芳, 等. 新诊断2型糖尿病患者视网膜微血管异常的临床特征及危险因素研究[J]. 中国全科医学, 2015,18(5):493-497.
[
|
[14] |
谭晓云, 李宁燕, 郭源, 等. 社区居民生活方式相关疾病及相关因素调查分析[J]. 中国临床保健杂志, 2008,11(1):13-15.
[
|
[15] |
陈国伟. 高血压与糖尿病[J]. 中国实用内科杂志, 2002,22(4):199-200.
[
|
[16] |
赵莉莉. 老年冠心病合并高血压患者的临床护理体会[J]. 中国药物与临床, 2019,19(10):138-140.
[
|
[17] |
张慧. 冠心病合并糖代谢异常中医证型随访研究[D]. 广州:广州中医药大学, 2007.
[
|
[18] |
王海涛, 朱洪. 改进的二分法查找[J]. 计算机工程, 2006,32(10):60-62.
[
|
[19] |
龚恰. 我国城镇住房保障制度存在的问题及建议[J]. 环渤海经济瞭望, 2010(8):19-20.
[
|
[20] |
秦江海, 张艳春, 张丽芳, 等. 典型城市居民慢性病患病率及患者疾病负担分析[J]. 中国公共卫生, 2014,30(1):5-7.
[
|
[21] |
孙健, 丁日佳, 陈艳艳. M/M/c型与M/M/1型排队系统对比仿真[J]. 北京工业大学学报, 2016,42(9):1324-1331.
[
|
[22] |
赵彤宇, 张乃通. 基于事件触发的通信业务量仿真方法[J]. 通信技术, 2002(11):70-72.
[
|
[23] |
新华社. 探访武汉慢病重症药店:取药员每日人均拿药3万盒[EB/OL]. https://www.sohu.com/a/376529356_267106, 2020-02-28.
[ the Xinhua News Agency. Visit a chronic and severe drug store in wuhan: The average dispenser takes 30, 000 boxes of medicine per day[EB/OL]. https://www.sohu.com/a/376529356_267106, 2020-02-28.]
|
[24] |
李华敏, 张辉. 顾客等待容忍度与银行排队服务系统的优化[J]. 金融论坛, 2011,16(2):29-34.
[
|
[25] |
谢雍宁. 苍术艾叶烟熏预防呼吸道传染病[J]. 医学信息, 2011,24(11):346.
[
|
[26] |
仪垂林, 张力美. 有限理性、情绪与决策[J]. 统计与决策, 2005(11):48-50.
[
|
/
〈 | 〉 |