Journal of Geo-information Science >
Identifying the Catchment Area of Metro Stations Using Multi-Source Urban Data
Received date: 2020-04-16
Request revised date: 2020-09-09
Online published: 2021-06-25
Supported by
Natural Science Foundation of Guangdong Province(2019A1515011049)
The Basic Research Program of Shenzhen Science and Technology Innovation Committee(JCYJ20180305125113883)
The Basic Research Program of Shenzhen Science and Technology Innovation Committee(JCYJ20170412105839839)
Copyright
With the development of the times, the scale of the world's cities is expanding, and the traffic demand of major cities has sharply increased. Traffic congestion and environmental problems caused by road transportation have led governmental departments to turn to underground transportation. The metro is the most important means for underground transportation. Identifying the catchment area of a metro station is essential for evaluating and improving metro system service and its surrounding built environment, which provides important reference for optimizing metro resources and planning new metro facilities. Traditional methods of identifying the catchment area of a metro station mostly depend on the investigation of residents' daily travel, which is usually time-intensive and labor-consuming and causes uncertainties in catchment area. The emergence of multi- source urban data provides a new solution to quantify the surrounding built environment and spatial distribution of passenger flow, which allows for a reasonable delineation of catchment areas. Transit Oriented Development (TOD) is an important choice for the harmonious development of cities and transportation in high-density cities (e.g.Shenzhen, Beijing, etc.). From the perspective of TOD, this paper presents a data-driven method to outline the catchment area of the metro station. We used multi-source urban data in 2017 in Shenzhen city including road network, bus routes, point of interest, etc.,to characterize the TOD around metro stations. Then these metro stations were spatially clustered, and their catchment areas were computed according to the trend of the TOD indices. The TOD-based catchment area of metro stations can vary across space. The results show that: (1) the proposed method captured the difference in catchment areas around different metro stations. The employment density and mixed land use played the most important role; (2) compared with suburbs, the catchment radius of metro stations in the central urban area was relatively smaller but represented higher travel demand, which indicated that the metro planning should better balance its service coverage and urban travel demand; and (3) the overlap of catchment areas in Shenzhen coincides with the well- developed areas, which inspire us that building up new metro stations could accelerate the development of surrounding areas.
TAN Peishan , MAI Ke , ZHANG Yatao , TU Wei . Identifying the Catchment Area of Metro Stations Using Multi-Source Urban Data[J]. Journal of Geo-information Science, 2021 , 23(4) : 593 -603 . DOI: 10.12082/dqxxkx.2021.200183
表1 2017年地铁站点聚类结果Tab. 1 The clustering result of metro stations in 2017 |
类别 | 数量/个 | 类别 | 数量/个 | 类别 | 数量/个 |
---|---|---|---|---|---|
第1类 | 4 | 第6类 | 3 | 第11类 | 1 |
第2类 | 1 | 第7类 | 49 | 第12类 | 2 |
第3类 | 8 | 第8类 | 31 | 第13类 | 4 |
第4类 | 7 | 第9类 | 36 | 第14类 | 2 |
第5类 | 2 | 第10类 | 14 | 第15类 | 3 |
表2 2017年深圳地铁站点的吸引半径和方差Tab. 2 The attraction radius and variance of Shenzhen metro stations with different threshold in 2017 |
类别 | DI阈值 | ||||
---|---|---|---|---|---|
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | |
第1类 | 1987 | 1227 | 902 | 902 | 662 |
第2类 | 1761 | 1349 | 920 | 920 | 711 |
第3类 | 1119 | 744 | 539 | 539 | 453 |
第4类 | 1722 | 1142 | 929 | 929 | 716 |
第5类 | 1451 | 1036 | 929 | 759 | 518 |
第6类 | 1203 | 856 | 759 | 593 | 525 |
第7类 | 1191 | 753 | 593 | 560 | 474 |
第8类 | 1117 | 712 | 712 | 531 | 439 |
第9类 | 1352 | 880 | 880 | 649 | 540 |
第10类 | 1603 | 1011 | 1011 | 768 | 643 |
第11类 | 1568 | 983 | 983 | 774 | 374 |
第12类 | 2028 | 859 | 859 | 782 | 368 |
第13类 | 1735 | 996 | 996 | 737 | 625 |
第14类 | 1942 | 1144 | 1144 | 701 | 569 |
第15类 | 2152 | 1374 | 1374 | 1059 | 782 |
15类吸引半径方差 | 335.4 | 203.3 | 199.4 | 152.2 | 122.8 |
全市域地铁站点 | 1595 | 1004 | 902 | 747 | 560 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
王淑伟, 孙立山, 荣建. 北京市轨道站点吸引范围研究[J]. 交通运输系统工程与信息, 2013,13(3):183-188.
[
|
[7] |
|
[8] |
|
[9] |
陆化普, 朱军. 城市轨道交通规划的研究与实践[M]. 北京: 中国水利出版社, 2001.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
周慧, 靳凤娟. TOD在开放性大学校园规划中的应用——以湖南大学为例[J]. 中外建筑, 2011(1):85-86.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
龙瀛, 周垠. 街道活力的量化评价及影响因素分析——以成都为例[J]. 新建筑, 2016(1):52-57.
[
|
[20] |
李清泉. 从Geomatics到Urban Informatics[J]. 武汉大学学报·信息科学版, 2017,42(1):1-6.
[
|
[21] |
|
[22] |
|
[23] |
|
[24] |
曹瑞, 涂伟, 巢佰崇, 等. 基于智能卡数据的地铁周边职住用地识别与分析[J]. 测绘地理信息, 2016,41(3):74-78.
[
|
[25] |
|
[26] |
张晓春, 田锋, 吕国林, 邵源. 深圳市TOD框架体系及规划策略[J]. 城市交通, 2011,9(3):37-44.
[
|
[27] |
唐炉亮, 牛乐, 杨雪, 等. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017,46(6):770-779.
[
|
[28] |
孔令彦, 关丽, 丁燕杰, 等. 空间大数据支持下的城市区域评估及其关键技术[J]. 测绘通报, 2017(8):100-105.
[
|
[29] |
单杰, 秦昆, 黄长青, 等. 众源地理数据处理与分析方法探讨[J]. 武汉大学学报·信息科学版, 2014,39(4):390-396.
[
|
[30] |
李清泉, 李德仁. 大数据GIS[J]. 武汉大学学报·信息科学版, 2014,39(6):641-644.
[
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
/
〈 | 〉 |