Journal of Geo-information Science >
Daily Estimation of Soil Moisture over Beijing-Tianjin-Hebei Region based on General Regression Neural Network Model
Received date: 2020-03-27
Request revised date: 2020-06-21
Online published: 2021-06-25
Supported by
National Natural Science Foundation of China(41571077)
National Key R&D Program of China(2016YFC0503002)
Open subject of Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities(12800-310430001)
Copyright
Surface Soil Moisture (SM) plays an important role in the land-atmosphere interaction and hydrological cycle. Low spatiotemporal resolution (i.e., 25~40 km and 2~3 days) microwave-based SM products such as the Soil Moisture and Ocean Salinity (SMOS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) limit their application in regional scale studies. The Soil Moisture Active Passive (SMAP) and Copernicus Sentinel 1A/B microwave active-passive surface soil moisture product (L2_SM_SP) has a higher spatial resolution (3 km), but its temporal resolution is coarse from 4 to 20 days due to the narrow overlapped swath width. In this study, we developed a machine learning algorithm using the General Regression Neural Network (GRNN) to improve the spatiotemporal resolution of the L2_SM_SP product based on multi-source remote sensing data. Land Surface Temperature (LST), Multi-band Reflectance, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Elevation, Slope, Longitude (Lon), and Latitude (Lat) were selected as input variables to simulate the L2_SM_SP soil moisture in GRNN model. Results show that: (1) GRNN-estimated soil moisture and the original estimates of L2_SM_SP were strongly correlated (r=0.7392, RMSE=0.0757 cm3/cm3); (2) the correlation between GRNN estimates and original L2_SM_SP product at typical dates of different seasons varied a lot. The correlation in spring was the lowest (rSpr=0.6152, RMSESpr=0.0653 cm³/cm³). While the correlation in winter was the strongest (rWin=0.8214, and RMSEWin=0.0367 cm3/cm3). The correlation in summer and autumn was close to each other (rSum=0.6957, rAut=0.7053, RMSESum=0.0754 cm³/cm³, and RMSEAut=0.0694 cm³/cm³); and (3) in 2016, the soil moisture in summer and autumn of the study area was significantly higher than that that in other seasons. In terms of spatial distribution, the soil moisture in the Bashang plateau area was low, while the soil moisture along coastal areas was obviously higher. In this study, we successfully improved the spatiotemporal resolution of L2_SM_SP product over Beijing-Tianjin-Hebei region from 3 km, and 4~20 days to 1 km, and 1 day. Its spatial coverage was also extended. The improved soil moisture product is of great significance for future eco-hydrological assessment, climate prediction, and drought monitoring in Beijing-Tianjin-Hebei region.
DENG Yawen , LING Ziyan , SUN Na , LV Jinxia . Daily Estimation of Soil Moisture over Beijing-Tianjin-Hebei Region based on General Regression Neural Network Model[J]. Journal of Geo-information Science, 2021 , 23(4) : 749 -761 . DOI: 10.12082/dqxxkx.2021.200149
表1 研究使用的遥感数据列表Tab. 1 Remote sensing data used in this study |
数据类型 | 数据名称 | 时间分辨率/d | 空间分辨率 | 产品类型 | 时间节点 | 数据位置 |
---|---|---|---|---|---|---|
MODIS | MOD13A2 | 16 | 1 km | 植被指数与反射率 | 2016-04-07 | h26v04, h26v05 |
MOD11A1 | 1 | 1 km | 地表温度 | 2016-07-05 | h27v04, h27v05 | |
SMAP | SPL2SMAP_S | 4~20 | 3 km | 土壤湿度 | 2016-09-28 | 116°E—118°E, 37°N—44°N |
2016-02-06 | ||||||
高程 | DEM | - | 30 m | 高程 | - | - |
表2 对模型输入变量进行主成分分析得到的特征根与方差贡献率Tab. 2 Characteristic roots and variance contribution rates obtained by principal component analysis of model input variables |
主成分 | 特征值 | 方差贡献率 | 累计贡献率 |
---|---|---|---|
1 | 5.8544 | 0.488 | 0.488 |
2 | 1.8477 | 0.154 | 0.642 |
3 | 1.1322 | 0.094 | 0.736 |
4 | 0.9806 | 0.082 | 0.818 |
5 | 0.7982 | 0.067 | 0.884 |
6 | 0.5754 | 0.048 | 0.932 |
7 | 0.4060 | 0.034 | 0.966 |
8 | 0.2731 | 0.023 | 0.989 |
9 | 0.0982 | 0.008 | 0.997 |
10 | 0.0257 | 0.002 | 0.999 |
11 | 0.0079 | 0.001 | 1.000 |
12 | 0.0006 | 0.000 | 1.000 |
表3 GRNN模型输入层变量降维前后的表现对比Tab. 3 Comparison of GRNN model's performance before and after input variables'dimensionality reduction |
r | RMSE/(cm³/cm³) | bias | ubRMSE | 样本量/个 | 训练时间/s | ||
---|---|---|---|---|---|---|---|
GRNN降维前扩散因子为0.09 | 训练精度 | 0.7566 | 0.0736 | -0.0011 | 0.0736 | 48000 | |
验证精度 | 0.7322 | 0.0766 | -0.0005 | 0.0765 | 12000 | 1007.75 | |
总体精度 | 0.7392 | 0.0757 | -0.0007 | 0.0757 | 60000 | ||
GRNNPCA降维后扩散因子为0.04 | 训练精度 | 0.7032 | 0.0777 | -0.0002 | 0.0777 | 48000 | |
验证精度 | 0.7140 | 0.0787 | 0.0012 | 0.0787 | 12000 | 768.02 | |
总体精度 | 0.7110 | 0.0784 | 0.0008 | 0.0784 | 60000 |
表4 不同季节GRNN 1 km土壤湿度的总体评价Tab. 4 Model training accuracy in different seasons |
时间 | 指标 | 训练精度 | 验证精度 | 总体精度 | 时间 | 指标 | 训练精度 | 验证精度 | 总体精度 |
---|---|---|---|---|---|---|---|---|---|
春季 (2016-04-07) | r | 0.6300** | 0.5886** | 0.6152** | 秋季 (2016-09-28) | r | 0.7467** | 0.6900** | 0.7053** |
RMSE/(cm³/cm³) | 0.0636 | 0.0669 | 0.0653 | RMSE/(cm³/cm³) | 0.0658 | 0.0708 | 0.0694 | ||
bias | 0.0009 | 0.0003 | 0.0005 | bias | 0.0004 | 0.0008 | 0.0007 | ||
ubRMSE | 0.0636 | 0.0659 | 0.0653 | ubRMSE | 0.0658 | 0.0708 | 0.0694 | ||
样本量/个 | 32 000 | 8000 | 40 000 | 样本量/个 | 32 000 | 8000 | 40 000 | ||
夏季 (2016-07-05) | r | 0.7277** | 0.6843** | 0.6957** | 冬季 (2016-12-14) | r | 0.8064** | 0.8308** | 0.8214** |
RMSE/(cm³/cm³) | 0.0715 | 0.0769 | 0.0754 | RMSE/(cm³/cm³) | 0.0348 | 0.0374 | 0.0367 | ||
bias | 0.0018 | 0.0013 | 0.0014 | bias | -0.0019 | -0.0016 | -0.0017 | ||
ubRMSE | 0.0715 | 0.0769 | 0.0754 | ubRMSE | 0.0348 | 0.0374 | 0.0367 | ||
样本量/个 | 32 000 | 8000 | 40 000 | 样本量/个 | 16 000 | 4000 | 20 000 |
注:**表示通过p<0.01的显著性检验。 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
丁旭, 赖欣, 范广洲, 等. 中国不同气候区土壤湿度特征及其气候响应[J]. 高原山地气象研究, 2016,36(4):28-35.
[
|
[7] |
|
[8] |
|
[9] |
韩帅, 师春香, 林泓锦, 等. CLDAS土壤湿度业务产品的干旱监测应用[J]. 冰川冻土, 2015,37(2):446-453.
[
|
[10] |
习阿幸, 刘志辉, 卢文君. 干旱区季节性冻土冻融状况及对融雪径流的影响[J]. 水土保持研究, 2016,23(2):333-339.
[
|
[11] |
刘荣华, 张珂, 晁丽君, 等. 基于多源卫星观测的中国土壤湿度时空特征分析[J]. 水科学进展, 2017,28(4):479-487.
[
|
[12] |
孔金玲, 李菁菁, 甄珮珮, 等. 微波与光学遥感协同反演旱区地表土壤湿度研究[J]. 地球信息科学学报, 2016,18(6):857-863.
[
|
[13] |
陈书林, 刘元波, 温作民. 卫星遥感反演土壤湿度研究综述[J]. 地球科学进展, 2012(11):1192-1203.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
贾炳浩, 师春香, 孙帅, 等. 基于风云卫星的土壤湿度数据同化研究:第35届中国气象学会年会[ C].中国安徽合肥, 2018.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
贾艳昌, 谢谟文, 姜红涛. 全球36 km格网土壤湿度逐日估算[J]. 地球信息科学学报, 2017,19(6):854-860.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
于占江, 杨鹏. 近50年京津冀气候变化及其对土壤湿度的影响[J]. 贵州农业科学, 2019,47(2):144-149.
[
|
[28] |
|
[29] |
李鹏飞, 刘文军, 赵昕奕, 等. 京津冀区域近50年气温、降水与潜在蒸散量变化分析[J]. 干旱区资源与环境, 2015,29(3):137-143.
[
|
[30] |
张悦, 沈润平, 彭露露, 等. 基于重建MODIS无云数据反演京津冀地区土壤湿度[J]. 江苏农业科学, 2016,44(12):375-378.
[
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
/
〈 |
|
〉 |