Journal of Geo-information Science >
Research on Site Selection Model of Special Charging Stations for Taxis
Received date: 2020-07-09
Request revised date: 2020-09-17
Online published: 2021-07-25
Supported by
National Key R&D Program of China(2016YFB0502300)
Copyright
With the increasing shortage of energy and occurrence of various environmental pollution problems in recent years, low-emission, low-noise, energy-saving, and environmentally friendly electric vehicles have received more and more attention nowadays. In the field of electric taxis in China, the planning and construction of public charging facilities are imminent. At present, there are still deficiencies in the research on site selection of electric taxi charging stations, such as the lack of rich and detailed trip data, insufficient analysis based on trip characteristics and operation state of taxis, and insufficient consideration of the impact of existing charging stations. Thus, this paper proposes a reasonable and feasible site selection framework for taxi charging stations. Based on the statistical analysis of GPS data of taxis, the Monte Carlo method is used to derive charging demand. The influencing factors of charging station construction including the construction cost, charging time, and the impact of established charging stations are analyzed to establish the site selection model of charging stations. And this model is further solved using Multi-Population Genetic Algorithm (MPGA). We obtained the trajectory data of 12 000 taxis in Beijing in one week to derive the charging demand. The site selection model was further established based on the charging demand of 100000 electric taxis. Our results show that the site selection model was feasible, which can effectively reduce the cost of charging station construction and shorten the average wait time of taxi charging.
ZHANG Yi , ZHU Pan . Research on Site Selection Model of Special Charging Stations for Taxis[J]. Journal of Geo-information Science, 2021 , 23(5) : 802 -811 . DOI: 10.12082/dqxxkx.2021.200360
表1 充电站等级和服务能力Tab. 1 Grade and service capacity of changing station |
建站等级 | 充电桩数量/台 | 充电站服务能力/(台/日) |
---|---|---|
一级 | 8 | 0~384 |
二级 | 15 | 384~720 |
三级 | 30 | 720~1440 |
四级 | 45 | 1440~2160 |
五级 | 60 | 2160~2880 |
六级 | 75 | 2880~3600 |
七级 | 90 | >3600 |
[1] |
国家发改委, 国家能源局, 等. 关于印发《电动汽车充电基础设施发展指南(2015-2020年)》的通知[EB\OL]. 中华人民共和国中央人民政府网站, http://www.gov.cn/zhengce/2015-10/09/content_5076250.htm, 2015-10-9.
[ National Development and Reform Commission, National Energy Administration, et al. Notice on printing and distributing the development guide for electric vehicle charging infrastructure (2015-2020)[EB\OL]. Website of the Central People's Government of the people's Republic of China, http://www.gov.cn/zhengce/2015-10/09/content_5076250.htm, 2015-10-9. ]
|
[2] |
赵书强, 周靖仁, 李志伟, 等. 基于出行链理论的电动汽车充电需求分析方法[J]. 电力自动化设备, 2017,37(8):105-112.
[
|
[3] |
张维戈, 颉飞翔, 黄梅, 等. 快换式公交充电站短期负荷预测方法的研究[J]. 电力系统保护与控制, 2013,41(4):61-66.
[
|
[4] |
刘文霞, 徐晓波, 周樨. 基于支持向量机的纯电动公交车充/换电站日负荷预测[J]. 电力自动化设备, 2014,34(11):41-47.
[
|
[5] |
|
[6] |
胡培婷, 曹小曙, 秦红旭, 等. 基于浮动车数据的新能源汽车充电站选址布局研究 ——以广州中心城区为例[J]. 现代城市研究, 2018(8):28-36.
[
|
[7] |
邓昌棉, 张勇. 基于数据驱动的电动出租车充电站规划方法研究[J]. 森林工程, 2020,36(3):77-85.
[
|
[8] |
温剑锋, 陶顺, 肖湘宁, 等. 基于出行链随机模拟的电动汽车充电需求分析[J]. 电网技术, 2015,39(6):1477-1484.
[
|
[9] |
徐青山, 蔡婷婷, 刘瑜俊, 等. 考虑驾驶人行为习惯及出行链的电动汽车充电站站址规划[J]. 电力系统自动化, 2016,40(4):59-65,77.
[
|
[10] |
陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015,30(4):216-225.
[
|
[11] |
刘志鹏, 文福拴, 薛禹胜, 等. 电动汽车充电站的最优选址和定容[J]. 电力系统自动化, 2012,36(3):54-59.
[
|
[12] |
郭磊, 王克文, 文福拴, 等. 电动汽车充电设施规划研究综述与展望[J]. 电力科学与技术学报, 2019,34(3):56-70.
[
|
[13] |
黄飞腾, 翁国庆, 南余荣, 等. 基于改进云自适应粒子群的多DG配电网EV充电站优化配置[J]. 中国电机工程学报, 2018,38(2):514-525.
[
|
[14] |
任玉珑, 史乐峰, 张谦, 等. 电动汽车充电站最优分布和规模研究[J]. 电力系统自动化, 2011,35(14):53-57.
[
|
[15] |
DB11/Z 728, 电动汽车电能供给与保障技术规范充电站[S], 2010.
[ DB11/Z 728, 2010, Technical specifications of electricity supply and assurance for electric vehicle: electric vehicle charging station, 2010. ]
|
[16] |
冯超, 周步祥, 林楠, 等. 电动汽车充电站规划的多种群混合遗传算法[J]. 电力系统及其自动化学报, 2013,25(6):123-129.
[
|
[17] |
叶在福, 单渊达. 多种群遗传算法在电网扩展规划中应用的改进[J]. 电力系统及其自动化学报, 1999,11(8):55-61.
[
|
[18] |
|
[19] |
|
[20] |
周亚娟, 赵志远, 吴升, 等. 基于大规模手机位置数据的城市潜在自行车出行需求评估[J]. 地球信息科学学报, 2020,22(6):1282-1293.
[
|
/
〈 |
|
〉 |