Journal of Geo-information Science >
Spatial Quantitative Analysis of Urban Energy Consumption based on Night-Time Remote Sensing Data and POI
Received date: 2020-07-16
Request revised date: 2020-08-19
Online published: 2021-07-25
Supported by
The 2020 International Cooperation Projects of Shenzhen Science and Technology Innovation Committee, China(GJHZ20190822173805220)
Copyright
Climate change has become a major global environmental issue that is widely concerned by countries around the world. It has been a very clear scientific consensus that the global carbon emission has to be cut urgently under the context of the global warming and extreme climate. Currently, few studies on the urban energy consumption have been performed, especially the quantitative research on the scale of urban blocks, which is actually required by cities in order to adopt precise control, optimize energy structure, and reduce carbon emissions. This paper took Jingmen, a resource-based city, as a case city, and applied night-time remote sensing data, POI, and other big data. Quantitative analysis of the spatial data on key factors affecting carbon emissions in transportation, industry, and construction sectors, respectively, was applied to realize block-scale spatial visualization of urban energy consumption, and furthermore, to discuss the impact of urbanization and industrialization on urban energy consumption. It is found that the continuous growth of energy consumption in the industrial sector was the main driving factor of the city's total energy consumption growth. Among the 72 towns (blocks), 10 towns (blocks) were dominated by industrial energy consumption which accounted for up to 68% the energy consumption of Jingmen. From 2005 to 2015, the total energy consumption of Jingmen City increased by 828,200 tons of standard coal equivalent(tce), while the number of towns (blocks) with more than 10,000 tons of standard coal equivalent(tce) decreased by 4. Therefore, the energy consumption of Jingmen City showed a trend of increase and concentration. The conclusions of this study can fill up the problems that cannot be found in the energy consumption statistics of cities, and propose a more accurate way to reduce energy consumption in Jingmen City, which provide a reference for the green transformation of similar small and medium-sized resource-based cities.
GAO Nannan , ZENG Hui , LI Fen . Spatial Quantitative Analysis of Urban Energy Consumption based on Night-Time Remote Sensing Data and POI[J]. Journal of Geo-information Science, 2021 , 23(5) : 891 -902 . DOI: 10.12082/dqxxkx.2021.200375
表1 荆门市2015年能源平衡表Tab. 1 Energy Balance Sheet of Jingmen City in 2015 (万 tce) |
能量来源 | 煤 | 焦炭 | 其他煤制品 | 天然气 | 液化天然气 | 原油 | 石油制品 | 电力 | 热力 | 其他能源 | 总和 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
原煤 | 精洗煤 | ||||||||||||
Ⅰ供应 | 480.89 | 478.81 | 2.08 | 1.51 | 0.69 | 8.25 | 685.36 | -444.38 | 17.97 | -3.47 | 26.03 | 722.85 | |
1.年初库存(+) | 53.59 | 53.59 | 4.16 | 1.17 | 58.95 | ||||||||
2.年末库存(–) | -39.28 | -39.28 | -1.32 | -40.60 | |||||||||
3.一次能源生产 | 98.14 | 98.14 | 6.34 | 104.48 | |||||||||
-水能 | 0.20 | 0.20 | |||||||||||
-风能 | 0.97 | 0.97 | |||||||||||
-太阳能 | 0.01 | 0.01 | |||||||||||
-生物质 | 1.89 | 1.89 | |||||||||||
-余热 | 3.27 | 3.27 | |||||||||||
4.调入(+)/调出(-) | 368.44 | 366.36 | 2.08 | 1.51 | 0.66 | 8.25 | 681.20 | -444.23 | 11.63 | -3.47 | 26.03 | 650.02 | |
Ⅱ转换投入(-)产出(+) | -216.80 | -216.80 | 0 | 0 | 0 | 0 | 0 | -685.36 | 689.72 | 90.05 | 5.98 | -19.75 | -136.16 |
1.发电 | -209.33 | -209.33 | -1.29 | 90.05 | -12.88 | -133.45 | |||||||
-生物质 | -4.70 | ||||||||||||
-余热 | -8.18 | ||||||||||||
2.供热 | -7.47 | -7.47 | -1.22 | 5.98 | -2.71 | ||||||||
3.炼油及煤制品 | -685.36 | -6.87 | -692.23 | ||||||||||
4.加工转换产出(+) | 692.23 | 692.23 | |||||||||||
5.回收利用(+) | 0 | ||||||||||||
Ⅲ终端消费量 | 252.66 | 250.58 | 2.08 | 1.51 | 0.69 | 8.25 | 0 | 0 | 245.35 | 103.32 | 2.46 | 6.28 | 620.52 |
1.农林牧渔 | 3.51 | 3.51 | 22.44 | 2.13 | 0.20 | 28.28 | |||||||
2.工业 | 221.03 | 218.95 | 2.08 | 1.51 | 0.69 | 3.19 | 73.55 | 78.84 | 2.41 | 5.91 | 387.13 | ||
3.建筑业 | |||||||||||||
4.交通运输 | 1.20 | 72.13 | 1.56 | 74.89 | |||||||||
5.商业和公共 | 20.50 | 20.50 | 0.80 | 38.38 | 6.80 | 66.48 | |||||||
6.居民生活 | 7.62 | 7.62 | 3.06 | 38.85 | 13.99 | 0.05 | 0.17 | 63.74 | |||||
Ⅳ损失 | 11.43 | 11.43 | 4.71 | 0.04 | 16.18 | ||||||||
Ⅴ统计平衡差额 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.01 | -0.01 | 0.01 | 0 | -0.01 |
Ⅵ可用最终消费量合计 | 252.66 | 250.58 | 2.08 | 1.51 | 0.69 | 8.25 | 245.34 | 103.31 | 2.47 | 6.28 | 620.51 |
表2 荆门市化工污染企业状况Tab. 2 The statu s of polluting enterprises in Jingmen City |
化工企业 | 概况 | 详细信息 |
---|---|---|
污染化工企业 | 排放废水企业6家、排放废气11家、污水处理厂5家、排放重金属企业15家、排放危险废物企业7家 | 根据2015年第二季度空气环境报告 |
排放废气企业 | 排放废气国控源企业上报数据8家。达标率87.5% | 湖北天宇玻璃制品有限公司的二氧化硫、颗粒物、氮氧化物等项目超标 |
能源利用项目及企业 | ① 煤制氢项目 | 2015年4月,荆门化工循环产业园内,盈德气体集团投资建设煤制氢项目 |
② 2万吨/年废硫酸再生装置建设项目 | 2014年12月,荆门市渝楚化工有限公司2万吨/年废硫酸再生装置建设项目属于污染严重项目。采用高温裂解工艺生产98%的工业硫酸,回用到厂内异辛烷装置的生产中 |
[1] |
本刊编辑部. 联合国气候变化大会通过《巴黎协议》[J]. 中国能源, 2015,37(12):1.
[ The Editorial Department of this Journal. The United Nations Climate Change Conference adopted the "Paris Agreement"[J]. Energy of China, 2015,37(12):1. ]
|
[2] |
United Nations. Sustainable development Goal 11-Sustainable cities: Why they matter[R]. 2015. https://www.un.org/sustainabledevelopment.
|
[3] |
|
[4] |
|
[5] |
郎一环, 李红强. 构建城市低碳能源体系的国际经验与中国行动[J]. 中国能源, 2010,32(7):11-16.
[
|
[6] |
王蕾, 魏后凯. 中国城镇化对能源消费影响的实证研究[J]. 资源科学, 2014,36(6):1235-1243.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
苏泳娴. 基于DMSP/OLS夜间灯光数据的中国能源消费碳排放研究[D]. 广州:中国科学院研究生院, 2015.
[
|
[11] |
梁竞, 张力小. 中国省会城市能源消费的空间分布特征分析[J]. 资源科学, 2009,31(12):2086-2092.
[
|
[12] |
刘竹, 耿涌, 薛冰, 等. 城市能源消费碳排放核算方法[J]. 资源科学, 2011,33(7):1325-1330.
[
|
[13] |
吴笛, 毛建素. 中国重点城市产业与能源消费基本特征研究[J]. 环境科学与技术, 2010,33(2):184-191.
[
|
[14] |
石玉淳. 基于LEAP模型的大连市工业能源消费分析研究[D]. 大连:大连海事大学, 2014.
[
|
[15] |
|
[16] |
黄莹, 郭洪旭, 廖翠萍, 等. 基于LEAP模型的城市交通低碳发展路径研究——以广州市为例[J]. 气候变化研究进展, 2019,15(6):670-683.
[
|
[17] |
贾涛, 杨仕浩, 李欣, 等. 武汉居民建筑物碳排放反演计算和时空分析[J]. 地球信息科学学报, 2020,22(5):1063-1072.
[
|
[18] |
荆门市政府办公室. “十三五”能源发展规划[R]. 湖北省荆门市, 2016.
[ Municipal Government Office of Jingmen. The 13th Five-Year Plan for Energy development[R]. Hubei, Jingmen, 2016. ]
|
[19] |
荆门市政府办公室. 荆门市新型城镇化规划(2016—2020年)[R]. 湖北省荆门市, 2016.
[ Municipal Government Office of Jingmen. Jingmen new-type urbanization plan (2016-2020)[R]. Hubei Jingmen, 2016. ]
|
[20] |
江亿. 我国建筑耗能状况及有效的节能途径[J]. 暖通空调, 2005,35(5):30-40.
[
|
[21] |
严晗, 吴烨, 张少君, 等. 北京典型道路交通环境机动车黑碳排放与浓度特征研究[J]. 环境科学学报, 2014,34(8):1891-1899.
[
|
[22] |
许盛. 南京市温室气体排放清单及其空间分布研究[D]. 南京:南京大学, 2011.
[
|
[23] |
Environmental Protection . Development of methodology for estimating VMT weighting by facility type[R]. 1999, Report EPA420-R-01-009, M6. SPD.003
|
[24] |
张玉军. 贵阳市道路网交叉口流量反推研究[D]. 大连:大连海事大学, 2010.
[
|
[25] |
李立源, 曹大铸. 道路交通流量优预测与交叉口量优控制[J]. 控制理论与应用, 1993,10(1):67-72.
[
|
[26] |
|
[27] |
苏泳娴, 陈修治, 叶玉瑶, 等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013,68(11):1513-1526.
[
|
[28] |
荆门市住建局. 荆门市中心城区民用集中供热管理办法(草案)[R]. 湖北省荆门市, 2020.
Housing and Urban-rural Construction Bureau of Jingmen. Administrative Measures for Civil Central Heating in Jingmen City Center (Draft)[R]. Hubei, Jingmen, 2021.
|
[29] |
赵彦婷. 基于多源数据的城市路网交通能耗和排放模型与算法[D]. 北京:北京交通大学, 2012.
[
|
[30] |
|
[31] |
舒松, 余柏蒗, 吴健平, 等. 基于夜间灯光数据的城市建成区提取方法评价与应用[J]. 遥感技术与应用, 2011,26(2):169-176.
[
|
[32] |
荆州市统计局. 荆门市2015年国民经济和社会发展统计公报[R]. 湖北荆门, 2015
[ Jingmen Bureau of Statistics. 2015 Jingzhou National Economic and Social Development Statistical Bulletin[R]. Hubei, Jingmen, 2015. ]
|
[33] |
谢菲菲. 城市交通碳排放量影响因素与低碳交通发展研究[D]. 北京:北京交通大学, 2013.
[
|
[34] |
李新佳. 欧洲智能交通建设情况及启发[J]. 城市交通, 2004,2(2):58-62.
[
|
[35] |
宋慧峰. 产业空间分布对碳排放影响的实证研究[D]. 广州:暨南大学, 2017.
[
|
[36] |
马海良, 王若梅, 丁元卿, 等. 城镇化对工业能源消费的门槛效应研究——以长江经济带省份为例[J]. 中国人口·资源与环境, 2017,27(3):56-62.
[
|
[37] |
傅立新, 郝吉明, 何东全, 等. 城市街区空气污染扩散模拟研究[C]// 全国大气环境学术会议, 1998.
[
|
/
〈 | 〉 |