Journal of Geo-information Science >
Area Change and Cause Analysis of Bosten Lake based on Multi-source Remote Sensing Data and GEE Platform
Received date: 2020-06-30
Request revised date: 2020-09-19
Online published: 2021-08-25
Supported by
Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0201)
Strategic Priority Research Program of Chinese Academy of Sciences(Class A)(A类XDA20060201、XDA20020102)
National Natural Science Foundation of China(41761134093)
National Natural Science Foundation of China(41471058)
The State Key Laboratory of Cryospheric founding(SKLCS-ZZ-2020)
Copyright
Bosten Lake is a typical inland lake in the arid zone. The change in the lake area is strongly related to local natural and cultural environmental changes. Based on the GIS and RS technologies, this paper combines Landsat imagery and MODIS data, including a total of 2289 scenes, with JRC GSW water mask products to characterize the interannual and intraannual changes of the area of Bosten Lake from 2000 to 2019 through the Google Earth Engine (GEE) platform using index methods. We use the 2019 Sentinel-2 images to compare and analyze the results. To quantify the the causes of the changes, we analyzed the human activities and daily meteorological data of Yanqi, Korla and Bayanbuluk meteorological stations during 2000-2018. Results show that: (1) the GEE is efficient for integrating multi-temporal high-resolution remote sensing data to analyze the temporal change of lake area, especially the intraannual change. Compared with Landsat-5/7/8 and MOD09GQ data, the lake shoreline extracted based on Sentinel-2 images shows more details due to their high temporal and spatial resolution; (2) during 2000-2013, the total lake area decreases by 181.66 km2 with a decreasing rate of 13.98km2/a; while during 2013-2019, the lake area increases by 133.13 km2 with a increasing rate of 22.19 km2/a; (3) Intraannually, the lake area shows an upward trend from Mar. to Jun., keeps peak until September, and decreases from Oct. to Dec. and (4) the interannual change of Bosten Lake area has no significant correlations with the changes of evaporation, precipitation, and accumulated temperature within the watershed. While the intraannual change of Bosten Lake area shows strong correlations with those meteorological varabiles.
Key words: Boston Lake; area Change; remote sensing extraction; shoreline; Landsat; MODIS; Sentinel-2; Google Earth Engine
PENG Yanfei , LI Zhongqin , YAO Xiaojun , MOU Jianxin , HAN Weixiao , WANG Panpan . Area Change and Cause Analysis of Bosten Lake based on Multi-source Remote Sensing Data and GEE Platform[J]. Journal of Geo-information Science, 2021 , 23(6) : 1131 -1153 . DOI: 10.12082/dqxxkx.2021.200361
表1 博斯腾湖面积提取所用数据源信息Tab. 1 The information of data source used for area extraction of Bosten Lake |
数据源 | 时间 | 条带号 | 数据量/幅 | |
---|---|---|---|---|
Landsat-5 TM T1_TOA | 2000—2011年 | WRS_PATH | WRS_ROW | |
142,143 | 31 | 84 | ||
Landsat-7 ETM+T1_TOA | 2000—2003年、2012年 | 142,143 | 31 | 28 |
Landsat-8 OLI T1_TOA | 2013—2019年 | 142,143 | 31 | 78 |
Landsat-8 OLI T1_SR | 2019年 | 142,143 | 31 | 9 |
Sentinel-2 SR | 2019年 | SENING_ORBIT_NUMBER | MGRS_TILE | |
19 | 45TVG, 45TWG | 11 15 | ||
19 | 45TVG, 45TWG | |||
MOD09GQ | 2000—2019年 | - | - | 2090 |
JRC GSW | 2000—2015 | - | - | - |
图3 基于 MOD09GQ 和Landsat-5/7/8的2000—2019年博斯腾湖面积逐年变化Fig. 3 The annual change of Bosten Lake area from 2000 to 2019 based on MOD09GQ and Landsat-5/7/8 |
图4 基于 MOD09GQ 和Landsat-5/7/8的2000—2019年博斯腾湖面积变化曲线Fig. 4 The curve of Bosten Lake area from 2000 to 2019 based on MOD09GQ and Landsat-5/7/8 |
图5 2000—2019年博斯腾湖水体范围变化Fig. 5 Changes in the water body of Bosten Lake from 2000 to 2019 |
图10 Landsat-8 OLI和Sentinel-2所得2019年博斯腾湖面积变化及其对比结果Fig. 10 Area change of Bosten Lake based on Landsat-8 OLI & Sentinel-2 and the comparison of results from above two data sources in 2019 |
表2 山区与平原区年际气候要素数据概观及对比Tab. 2 Overview and comparison of Interannual data of climate elements in mountains and plain areas |
年积温/℃ | 年降水量/mm | 年蒸发量/mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | |||
平原区 | 4762.5 | 4295.1 | 4569.9 | 145.3 | 21.8 | 67.6 | 1876.7 | 1360.3 | 1528.9 | ||
山区 | 1612.9 | 1340.2 | 1467.4 | 372.0 | 212.4 | 303.3 | 2044.8 | 1748.4 | 1872.4 | ||
相差 | 3149.6 | 2954.9 | 3102.5 | -226.7 | -190.6 | -235.7 | -168.1 | -388.1 | -343.5 |
图12 2000—2018年焉耆和库尔勒站蒸发量、降水量和 积温变化Fig. 12 Yanqi and Korla stations from 2000 to 2018(Evaporation,Precipitation and Accumulated temperature) |
表4 年积温、年降水量和年蒸发量分别与博斯腾湖年均面积的相关性Tab. 4 The correlation of annual accumulated temperature, annual precipitation and annual evaporation with annual mean area of Boston Lake |
年积温 | 年降水量 | 年蒸发量 | ||||||
---|---|---|---|---|---|---|---|---|
平原区 | 山区 | 平原区 | 山区 | 平原区 | 山区 | |||
Pearson | -0.3824 | -0.3351 | -0.0340 | -0.0270 | -0.2528 | -0.0863 | ||
Kendall | -0.0703 | -0.3072 | -0.0177 | 0.0327 | -0.2581 | -0.0850 | ||
Spearman | -0.1474 | -0.3622 | 0.0210 | 0.0898 | -0.3624 | -0.0836 |
表5 各气象要素分别与博斯腾湖面积的关联度Tab. 5 The relational grade between each meteorological feature and area of Boston Lake |
积温 | 降水量 | 蒸发量 | ||||||
---|---|---|---|---|---|---|---|---|
平原区 | 山区 | 平原区 | 山区 | 平原区 | 山区 | |||
年气象要素 与年均面积 | 0.5668 | 0.2911 | 0.0102 | 0.0318 | 0.3348 | 0.0849 | ||
月气象要素 与月均面积 | 0.6347 | 0.0094 | 0.4118 | 0.5770 | 0.7780 | 0.6930 |
表6 月积温、月降水量和月蒸发量与博斯腾湖月均面积的相关性Tab. 6 The correlation of monthly accumulated temperature, monthly precipitation and monthly evaporation with monthly mean area of Boston Lake |
月积温 | 月降水量 | 月蒸发量 | ||||||
---|---|---|---|---|---|---|---|---|
平原区 | 山区 | 平原区 | 山区 | 平原区 | 山区 | |||
Pearson | 0.6099 | 0.1831 | 0.4453 | 0.5350 | 0.5516 | 0.6384 | ||
Kendall | 0.2778 | -0.0476 | 0.4944 | 0.5111 | 0.3333 | 0.2889 | ||
Spearman | 0.4167 | -0.1071 | 0.5958 | 0.6849 | 0.4424 | 0.4667 |
[1] |
|
[2] |
|
[3] |
张家凤. 开都河-孔雀河流域水资源优化配置研究[D]. 乌鲁木齐:新疆农业大学, 2012.
[
|
[4] |
张建平. 博斯腾湖流域生态环境现状及治理对策浅析[J]. 环境科技, 2010,23(S2):76-79.
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
万洪秀, 孙占东, 王润. 博斯腾湖湿地生态脆弱性评价研究[J]. 干旱区地理, 2006,29(2):248-254.
[
|
[43] |
王亚俊, 李宇安, 王彦国, 等. 20世纪50年代以来博斯腾湖水盐变化及趋势[J]. 干旱区研究, 2005(3):355-360.
[
|
[44] |
高华中, 姚亦锋. 近50年来人类活动对博斯腾湖水位影响的量化研究[J]. 地理科学, 2005,25(3):305-309.
[
|
[45] |
徐海量, 陈亚宁, 李卫红. 博斯腾湖湖水污染现状分析[J]. 干旱区资源与环境, 2003,17(3):95-97.
[
|
[46] |
王润,
[
|
[47] |
张一琼, 海米提·依米提, 魏彬, 等. 1972—2011年博斯腾湖面积变化遥感分析[J]. 安徽农业科学, 2015,43(12):245-249.
[
|
[48] |
白洁, 陈曦, 李均力, 等. 1975—2007年中亚干旱区内陆湖泊面积变化遥感分析[J]. 湖泊科学, 2011,23(1):80-88.
[
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
ESA Sentinel-2 Team. GMES Sentinel-2 Mission Requirements Document[EB/OL]. [2020-7-8] https://earth.esa.int/pub/ESA_DOC/GMES_Sentinel2_MRD_issue_2.0_update.pdf.
|
[58] |
|
[59] |
Joint Research Centre Global Surface Water-Data Users Guide(v2)[EB/OL]. [2019] https://global-surface-water.appspot.com/download.
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
常庆瑞, 蒋平安, 周勇. 遥感技术导论[M]. 北京: 科学出版社, 2004.
[
|
[69] |
|
[70] |
王志辉, 易善桢. 不同指数模型法在水体遥感提取中的比较研究[J]. 科学技术与工程, 2007,7(4):534-537.
[
|
[71] |
杨忠恩, 骆剑承, 徐鹏炜. 利用NOAA-AVHRR资料提取水体信息的初步研究[J]. 遥感技术与应用, 1995,10(1):25-29.
[
|
[72] |
刘凯, 彭力恒, 李想, 等. 基于Google Earth Engine的红树林年际变化监测研究[J]. 地球信息科学学报, 2019,21(5):731-739.
[
|
[73] |
谭深, 吴炳方, 张鑫. 基于Google Earth Engine与多源遥感数据的海南水稻分类研究[J]. 地球信息科学学报, 2019,21(6):937-947.
[
|
[74] |
|
[75] |
|
[76] |
|
[77] |
林乃峰, 沈渭寿, 张慧, 等. 近35a西藏那曲地区湖泊动态遥感与气候因素关联度分析[J]. 生态与农村环境学报, 2012,28(3):231-237.
[
|
[78] |
|
[79] |
王国庆, 张建云, 刘九夫, 等. 气候变化和人类活动对河川径流影响的定量分析[J]. 中国水利, 2008(2):55-58.
[
|
[80] |
迪拉娜·尼加提, 海米提·依米提, 麦麦提吐尔逊·艾则孜, 等. 基于3S的焉耆盆地生态服务价值对土地利用变化的响应[J]. 安徽农业科学, 2013,41(10):4571-4575.
[The response of ecosystem services value to land use change in karashahar basin based on 3S technology[J]. Journal of Anhui Agricultural Sciences, 2013,41(10):4571-4575. ]
|
[81] |
尚河英, 尹忠东. 塔里木河流域生态输水效益分析[J]. 水利科技与经济, 2014,20(2):17-20.
[
|
[82] |
赵奕. 博斯腾湖综合治理及生态修复工程前后水环境质量评价研究[D]. 乌鲁木齐:新疆大学, 2017.
[
|
[83] |
邓燕. 博斯腾湖生态输水对地下水的影响研究[J]. 黑龙江水利科技, 2019,47(1):10-13.
[Study on influence of ecological water conveyance on groundwater in Bosten lake[J]. Heilongjiang Science and Technology of Water Conservancy, 2019,47(1):10-13. ]
|
[84] |
岳桢干. 欧洲Sentinel-2A卫星即将大显身手—“哥白尼”对地观测计划简介(上)[J]. 红外, 2015,36(8):32-36.
[
|
[85] |
杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019,21(5):740-751.
[
|
[86] |
陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine平台的三江源地区生态质量动态监测与分析[J]. 地球信息科学学报, 2019,21(9):1382-1391.
[
|
/
〈 | 〉 |