Journal of Geo-information Science >
Evolution of the Multiple Accumulated Temperature Across Mainland China in 1961-2018 with the Gridded Meteorological Dataset
Received date: 2020-09-05
Request revised date: 2020-12-12
Online published: 2021-10-25
Supported by
National Natural Science Foundation of China(51709218)
National Key R&D Program of China(2018YFC1407405)
National Key R&D Program of China(2018YFC1506601)
Copyright
Accumulated Temperature (AT) could affect plants' phonological period and crops' yield and spatial distribution. AT is usually obtained by extrapolation of surface observations. However, AT would have greater spatial uncertainties in regions where the surface observations are sparsely distributed with complex terrain. In recent years, there have been some gridded meteorological data with well spatial representation. If studies used these high spatial resolution gridded meteorological data to directly calculate AT, the problem mentioned above would be solved. This study used the gridded dataset (CN05.1) with high spatial resolution and long term time series from 1961-2018 to analyze the spatiotemporal changes of the four Accumulated Temperatures (ATs) in mainland China with the thresholds of ≥0 ℃, ≥5 ℃, ≥10 ℃, and ≥15 ℃, respectively. The gridded dataset was made using more than 2400 surface meteorological stations across mainland China and was well extrapolated by the plate spline method. The main conclusions are summarized as follows: ① In mainland China, the four ATs (≥0 ℃, ≥5 ℃, ≥10 ℃ and ≥15 ℃) have low-value areas in the Qinghai-Tibet Plateau, Tianshan Mountains in Xinjiang, and Northeast China, but high-value areas in South China. Their spatial patterns are similar to those of the 2-m air temperature. ② All four ATs show significant increasing trends, especially in Inner Mongolia and Northeast China. ③ Due to changes in the AT spatial trends, the area of tropical and subtropical regions, identified by a threshold of 10 ℃, have a significant increase. In contrast, the area of mid-temperate and cold-temperate regions have a significant decrease. ④ During 1961-2018, starting time of four ATs had significantly advanced while the ending time had significantly delayed in both regional and point scales. The interval period of temperature transition ranges of 0~5 ℃, 5~10 ℃, and 10~15 ℃’s starting time has more severe changes in the Loess Plateau and Inner Mongolia. For interval period of ending time, Central China Plain changes greatly. These significant changes would impact the farming plan, crop physiology, plant diseases, and insect pests. In the future, the gridded dataset with more high spatial resolution and longer time series could be used to study the changes of accumulated temperature under climate change.
BAI Lei , ZHANG Fan , SHANG Ming , SHI Chunxiang , SUN Shuai , LIU Lijun , WEN Yuanqiao , SU Chuancheng . Evolution of the Multiple Accumulated Temperature Across Mainland China in 1961-2018 with the Gridded Meteorological Dataset[J]. Journal of Geo-information Science, 2021 , 23(8) : 1446 -1460 . DOI: 10.12082/dqxxkx.2021.200500
图6 1961—2018年典型站点不同积温开始和结束时间时间序列Fig. 6 Time series of the starting and ending time of different ATs at typical sites from 1961 to 2018 |
[1] |
严中伟, 丁一汇, 翟盘茂, 等. 近百年中国气候变暖趋势之再评估[J]. 气象学报, 2020, 78(3):370-378.
[
|
[2] |
秦大河,
[
|
[3] |
|
[4] |
|
[5] |
唐国平, 李秀彬,
[
|
[6] |
肖登攀, 陶福禄, 沈彦俊, 等. 华北平原冬小麦对过去30年气候变化响应的敏感性研究[J]. 中国生态农业学报, 2014, 22(4):430-438.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
齐永青, 孙宏勇, 沈彦俊. 太行山山前平原近50年气候变暖特征及其对冬小麦-夏玉米作物系统的影响[J]. 中国生态农业学报, 2011, 19(5):1048-1053.
[
|
[11] |
|
[12] |
孟林, 刘新建, 邬定荣, 等. 华北平原夏玉米主要生育期对气候变化的响应[J]. 中国农业气象, 2015, 36(4):375-382.
[
|
[13] |
|
[14] |
|
[15] |
|
[16] |
赵彦茜, 肖登攀, 唐建昭, 等. 气候变化对我国主要粮食作物产量的影响及适应措施[J]. 水土保持研究, 2019, 26(6):317-326.
[
|
[17] |
范玲玲. 过去65年中国小麦种植时空格局变化及其驱动因素分析[D]. 北京:中国农业科学院, 2018.
[
|
[18] |
胡实, 莫兴国, 林忠辉. 气候变化对海河流域主要作物物候和产量影响[J]. 地理研究, 2014, 33(1):3-12.
[
|
[19] |
蔡剑, 姜东. 气候变化对中国冬小麦生产的影响[J]. 农业环境科学学报, 2011, 30(9):1726-1733.
[
|
[20] |
|
[21] |
何奇瑾. 我国玉米种植分布与气候关系研究[D]. 南京:南京信息工程大学, 2012.
[
|
[22] |
云雅如, 方修琦, 王媛, 等. 黑龙江省过去20年粮食作物种植格局变化及其气候背景[J]. 自然资源学报, 2005, 20(5):697-705.
[
|
[23] |
冯秀藻, 陶炳炎. 农业气象学原理[M]. 北京: 气象出版社, 1991.
[
|
[24] |
|
[25] |
矫梅燕. 气候变化对中国农业影响评估报告[M]. 北京: 社会科学文献出版社, 2014.
[
|
[26] |
马倩倩, 贺勇, 张梦婷, 等. 中国北部冬麦区小麦生育期对生育阶段积温变化的响应[J]. 中国农业气象, 2018, 39(4):233-244.
[
|
[27] |
胡琦, 潘学标, 邵长秀, 等. 1961-2010年中国农业热量资源分布和变化特征[J]. 中国农业气象, 2014, 35(2):119-127.
[
|
[28] |
李帅, 张勃, 马彬, 等. 基于格点数据的中国1961—2016年≥5℃、≥10℃有效积温时空演变[J]. 自然资源学报, 2020, 35(5):1216-1227.
[
|
[29] |
邱新法, 王喆, 曾燕, 等. 1960—2013年中国≥10℃积温时空变化特征及其主导因素分析[J]. 江苏农业科学, 2017, 45(2):220-225.
[
|
[30] |
|
[31] |
普宗朝, 张山清, 李景林, 等. 近50a新疆≥0℃持续日数和积温时空变化[J]. 干旱区研究, 2013, 30(5):781-788.
[
|
[32] |
刘勤, 严昌荣, 何文清, 等. 黄河流域近40a积温动态变化研究[J]. 自然资源学报, 2009, 24(1):147-153.
[
|
[33] |
戴声佩, 李海亮, 罗红霞, 等. 1960—2011年华南地区界限温度10℃积温时空变化分析[J]. 地理学报, 2014, 69(5):650-660.
[
|
[34] |
|
[35] |
刘少华, 严登华, 翁白莎, 等. 近50a中国≥10℃有效积温时空演变[J]. 干旱区研究, 2013, 30(4):689-696.
[
|
[36] |
廖顺宝, 李泽辉. 积温数据栅格化方法的实验[J]. 地理研究, 2004, 23(5):633-640.
[
|
[37] |
龚伟伟. CMA陆面数据同化系统(CLDAS)产品评估[D]. 南京:南京信息工程大学, 2014.
[
|
[38] |
李飞, 王春, 赵军, 等. 中国陆地多年平均积温空间化研究[J]. 自然资源学报, 2010, 25(5):778-784.
[
|
[39] |
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4):1102-1111.
[
|
[40] |
苏文. 中国典型生态系统生态站2005-2015年≥10℃积温数据集[Z]. 2018.
[
|
[41] |
郑景云, 卞娟娟, 葛全胜, 等. 1981-2010年中国气候区划[J]. 科学通报, 2013, 58(30):3088-3099.
[
|
[42] |
付雨晴, 丑洁明, 董文杰. 气候变化对我国农作物宜播种面积的影响[J]. 气候变化研究进展, 2014, 10(2):110-117.
[
|
[43] |
王涛, 沈渭寿, 林乃峰, 等. 长江流域近50 a≥0℃积温变化特征及农业适应对策[J]. 生态与农村环境学报, 2015, 31(1):22-29.
[
|
[44] |
梁宏, 王培娟, 章建成, 等. 1960—2011年东北地区热量资源时空变化特征[J]. 自然资源学报, 2014, 29(3):466-479.
[
|
[45] |
刘洋, 王占海, 姜文来, 等. 1956—2009年东北地区热量资源时空变化特征分析[J]. 中国农业资源与区划, 2013, 34(2):13-20.
[
|
[46] |
宁晓菊. 气候变化下我国主要粮食作物种植环境适应性研究[D]. 郑州:河南大学, 2016.
[
|
[47] |
胡毅. 应用气象学[M]. 北京: 气象出版社, 2005.
[
|
[48] |
李帅, 张勃, 何航, 等. 基于格点数据的中国喜凉作物有效积温区划[J]. 江苏农业学报, 2019, 35(5):1136-1143.
[
|
[49] |
张立波, 娄伟平. 气候变暖对长江中下游地区热量资源分布的影响分析[J]. 自然资源学报, 2013, 28(8):1361-1372.
[
|
[50] |
张立波, 景元书, 陈传雷. 1960—2010年中国华北东北地区热量资源时空变化[J]. 气象与环境学报, 2014, 30(1):80-87.
[
|
/
〈 | 〉 |