Journal of Geo-information Science >
Application Study of Coupling Rainfall-runoff Modeling and Floodplain Inundation Mapping
Received date: 2020-10-21
Request revised date: 2020-12-23
Online published: 2021-10-25
Copyright
Flood researches include model simulation of runoff and inundation. In order to investigate the rainfall, runoff-producing, flow concentration, and inundation in a basin and to improve the accuracy of flood forecasting, this study established a hydrological hydrodynamic coupling flood forecasting model. Two HEC software modules, HMS and RAS, were used to integrate the two-dimensional hydrodynamic model with the traditional hydrological model. Taking Wende River Basin in Jilin Province as an example, the flooding process of 2017 "7·13" flood in Wende river sub-basin is simulated. Firstly, input data was preprocessed. A HEC-HMS hydrological model was established and optimized by multi-parameter calibration. Then, the hydrographic model output were assigned as the boundary conditions of a new RAS two-dimensional hydrodynamic model, which was used to simulate the inundation of key sub-basins. The hydrological simulation provided an optimal NSE coefficient of 0.988 for the hydrograph while the two-dimensional hydrodynamic analysis provided a maximum inundation depth of 9.3 m with a relative error of -5.2%. The simulated inundation map showed that plenty of cultivated fields in the upstream area were flooded with a water depth ranging from 0.5 to 2 m, and an average flow velocity smaller than 1 m/s. In the downstream area of Kouqian Town, the maximum inundation depth was close to 1 m, and the flow velocity was from 0.2 to 1.5 m/s, which was consistent with the field measurement. The simulated results from our hydrological hydrodynamic coupling model have high accuracy. It provides a meaningful technical method for flood forecasting in basins with complex hydrological and hydraulic conditions.
Key words: hydrology; hydrodynamics; 2-D hydrodynamic model; coupling model; HEC-HMS; HEC-RAS; flood Simulation; Wende river
SHEN Zeyu , DING Yongsheng , KONG Qiao . Application Study of Coupling Rainfall-runoff Modeling and Floodplain Inundation Mapping[J]. Journal of Geo-information Science, 2021 , 23(8) : 1473 -1483 . DOI: 10.12082/dqxxkx.2021.200621
表1 不同土地利用n值设置Tab. 1 Parameter n value of land use classification |
土地利用 | 耕地 | 林地 | 水域 |
---|---|---|---|
相关描述 | 农作物成熟 | 树木、灌木 | 河床多石、草 |
n值 | 0.045 | 0.060 | 0.035 |
[1] |
|
[2] |
宋晓猛, 张建云, 孔凡哲, 等. 基于流域地形地貌特征的分布式汇流方法[J]. 长江流域资源与环境, 2015, 24(4):585-593.
[
|
[3] |
曾志强, 杨明祥, 雷晓辉, 等. 流域河流系统水文-水动力耦合模型研究综述[J]. 中国农村水利水电, 2017(9):72-76.
[
|
[4] |
《全球工程前沿2019》报告发布[J]. 隧道建设(中英文), 2019, 39(12):2049.
[Global engineering frontiers 2019 report released[J]. Tunnel Construction, 2019, 39(12):2049. ]
|
[5] |
|
[6] |
程文飞, 陈军锋, 吴博, 等. HEC-HMS水文模型在圪洞流域洪水模拟中的应用[J]. 水电能源科学, 2018, 36(8):52-55.
[
|
[7] |
邢子康, 马苗苗, 文磊, 等. HEC-HMS模型在缺资料地区山洪预报的应用研究[J]. 中国水利水电科学研究院学报, 2020, 18(1):54-61.
[
|
[8] |
王辉, 张佳, 张骏. 基于HEC-RAS模型的青海省玉树县巴塘河流域洪水模拟分析[J]. 水利与建筑工程学报, 2018, 16(6):219-224.
[
|
[9] |
蒋正兴. HEC-RAS在中小河流治理中的应用[J]. 中国水运(下半月), 2018, 18(8):140-141,168.
[
|
[10] |
林立, 张翼, 程玉祥. Mike11与HEC-RAS水动力模型洪水计算成果分析[J]. 浙江水利科技, 2019, 47(1):17-20.
[
|
[11] |
|
[12] |
宁聪, 傅志敏, 王志刚. HEC-RAS模型在二维溃坝洪水研究中的应用[J]. 水利水运工程学报, 2019(2):86-92.
[
|
[13] |
蒋卫威, 鱼京善, 赤穗良辅, 等. 基于水文水动力耦合模型的山区小流域洪水预报[J]. 水文, 2020, 40(5):28-35.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
韩思伟, 赵建明, 叶水根. 基于WMS模型的大石河上游降雨产流模拟[J]. 节水灌溉, 2014(11):44-47,52.
[
|
[19] |
王琰, 丁永生, 孔乔, 等. 分布式水文模型多参数优化与不确定性分析[J]. 大连海事大学学报, 2020, 46(2):96-106.
[
|
[20] |
李鹤, 赵继军. 比降-面积法推求口前水文站10728洪峰流量[J]. 吉林水利, 2011(1):39-41.
[
|
[21] |
何秉顺, 刘昌军, 胡兆军, 等. 新形势下做好山洪灾害防御的思考[J]. 中国防汛抗旱, 2017, 27(5):86-92.
[
|
[22] |
马永明, 张利华, 张康, 等. 基于SWAT模型和多源DEM数据的流域水系提取精度分析[J]. 地球信息科学学报, 2019, 21(10):1527-1537.
[
|
[23] |
刘佳嘉, 周祖昊, 贾仰文, 等. 河网提取算法中河道断裂现象原因剖析及算法改进[J]. 中国水利水电科学研究院学报, 2013, 11(3):195-200.
[
|
[24] |
|
[25] |
赵远洋, 丁永生, 孙丹, 等. 基于Arcpy编程修正的数字高程模型小流域水文分析[J]. 大连海事大学学报, 2016, 42(4):55-60.
[
|
[26] |
夏铭辉, 秦景, 牛文龙, 等. 基于BP神经网络的HEC-RAS二维模型糙率参数自动率定[J]. 水利水电技术, 2020, 51(5):38-46.
[
|
[27] |
HEC-RAS, reference manual; USACE, version 5. 0. (US Army Corps of Engineers, CPD-68, 2016)
|
[28] |
赵法存. 浑江干流江源区段防洪堤防治理[J]. 吉林水利, 2019(4):38-40.
[
|
/
〈 | 〉 |