Journal of Geo-information Science >
Identification of Sandy Land in the Midstream of the Yarlung Zangbo River
Received date: 2021-03-17
Request revised date: 2021-04-22
Online published: 2022-04-25
Supported by
The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(2019QZKK0404)
The National Natural Science Foundation of China(42071349)
Sichuan Science and Technology Program(2020JDJQ0003)
The Chinese Academy of Sciences "Light of West China" Program(2016333)
Copyright
As the political, cultural, and economic core zone of Tibet, the middle part of the Yarlung Zangbo River basin has suffered from serious land desertification for a long time, posing obvious negative impacts for the local socio-economic development and natural environmental protection. It is the basic precondition for land desertification prevention and control to obtain spatial distribution, track the status quo, and analyze dynamic development of sandy land desertification. Remote sensing images have been widely used in the dynamical monitoring of sandy land information due to its characteristics of fast, large-scale, and high precision. In order to reduce the uncertainty caused by the fragmented distribution of sandy land and the large area of sparsely vegetation surfaces in this region, this study developed an object-oriented integrated classification method, combining decision tree classifier and nearest neighbor classifier. The method is based on the Landsat cloud-free images from Google Earth Engine platform. The spectral, geometrical, and topographic features of sandy land were extracted as the inputs of the method to differentiate sandy land from other land cover types, including the sparsely vegetated surfaces with similar spectral pattern as sandy land. The results indicated that, firstly, with the validation sample data collected from the Google Earth high-resolution images and field investigation, the integrated classification method has the highest overall accuracy of 92.38 % and the Kappa coefficient of 0.82. Secondly, compared with other single classifier classification methods, such as supported vector machine, nearest neighbor, and decision tree, the integrated classification method achieved the best classification results in identifying sandy land with small area. In addition, it also reduced the confusion between sandy land and sparsely vegetated surfaces, thus increased the reliability of the classification results. Thirdly, the sandy land in the middle part of the Yarlung Zangbo River basin in 2019 was mapped based on the proposed method with an area of 299.66 km2, displaying a zonal and fragmented pattern along river valleys and concentrating on the northern bank of rivers and the regions with southern aspect, low altitude, and close to riverways. This study provides a new direction for sandy land desertification monitoring with remote sensing data, and its application can also serve the prevention and management of sandy land desertification in the middle part of the Yarlung Zangbo River basin.
ZHAN Qiqi , ZHAO Wei , YANG Mengjiao , FU Hao , LI Xinjuan , XIONG Donghong . Identification of Sandy Land in the Midstream of the Yarlung Zangbo River[J]. Journal of Geo-information Science, 2022 , 24(2) : 391 -404 . DOI: 10.12082/dqxxkx.2022.210138
表1 特征数据集信息Tab. 1 Information of the selected features |
特征变量类别 | 变量名称 | 特征说明 |
---|---|---|
光谱特征 | 波段均值(Band Mean) | Landsat-8/OLI波段1—7地表反射率 |
相邻对象的差异(Mean Difference to Neighbors) | Landsat-8/OLI波段1—7地表反射率差异 | |
几何特征 | 面积(Area) | 组成影像对象的像元数目 |
长宽比(Length/Width) | 包围影像对象的最小矩形的长宽比 | |
形状指数(Shape index) | 影像对象的周长与4倍面积平方根的比值 | |
地形特征 | 海拔(Elevation) | 组成影像对象的像元平均海拔 |
坡度(Slope) | 组成影像对象的像元平均坡度 | |
坡向(Aspect) | 组成影像对象的像元平均坡向 | |
专题指数 | 归一化植被指数(Normalized Difference Vegetation Index, NDVI) | |
新型水体指数(New Water Index, NWI) | ||
改进的土壤调节植被指数(Modified Soil Adjusted Vegetation Index, MSAVI) |
注:PNIR、PRED、PGREEN、PSWIR分别代表Landsat-8/OLI近红外波段、红光波段、绿光波段以及短波红外波段的地表反射率。 |
表2 4种分类方法的分类结果精度评价Tab. 2 Accuracy assessment of four classification results |
支持向量机 | 最近邻分类 | 决策树分类 | 组合分类法 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
沙化 土地 | 非沙化 土地 | 总计 | 沙化 土地 | 非沙化 土地 | 总计 | 沙化 土地 | 非沙化 土地 | 总计 | 沙化 土地 | 非沙化 土地 | 总计 | ||||
沙化土地 | 107 | 26 | 133 | 102 | 31 | 133 | 108 | 25 | 133 | 116 | 17 | 133 | |||
非沙化土地 | 28 | 164 | 192 | 14 | 178 | 192 | 20 | 172 | 192 | 11 | 181 | 192 | |||
总计 | 135 | 190 | 116 | 209 | 128 | 197 | 127 | 198 | |||||||
生产者精度/% | 80.45 | 85.42 | 76.69 | 92.71 | 81.20 | 89.58 | 87.22 | 94.27 | |||||||
用户精度/% | 79.26 | 86.32 | 87.93 | 85.17 | 84.38 | 87.31 | 91.34 | 91.41 | |||||||
总体精度/% | 83.38 | 86.15 | 86.15 | 91.38 | |||||||||||
Kappa系数 | 0.66 | 0.71 | 0.71 | 0.82 |
[1] |
|
[2] |
屠志方, 李梦先, 孙涛. 第五次全国荒漠化和沙化监测结果及分析[J]. 林业资源管理, 2016(1):1-5,13.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
王志波, 高志海, 王琫瑜, 等. 基于面向对象方法的沙化土地遥感信息提取技术研究[J]. 遥感技术与应用, 2012, 27(5):770-777.
[
|
[9] |
李长龙, 高志海, 吴俊君, 等. 基于分形网络进化分割和对象特征提取的GF-1卫星数据沙化土地分类识别研究[J]. 干旱区资源与环境, 2015, 29(11):152-157.
[
|
[10] |
|
[11] |
|
[12] |
张亮亮, 张朝, 曹娟, 等. GEE环境下的玉米低温冷害损失快速评估[J]. 遥感学报, 2020, 24(10):1206-1220.
[
|
[13] |
胡云锋, 商令杰, 张千力, 等. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4):573-583.
[
|
[14] |
张华, 安慧敏. 基于GEE的1987—2019年民勤绿洲NDVI变化特征及趋势分析[J]. 中国沙漠, 2021, 41(1):28-36.
[
|
[15] |
|
[16] |
|
[17] |
崔海山, 张柏, 刘湘南. 松原市沙区土地利用变化及其对土地沙化的影响研究[J]. 水土保持学报, 2002, 16(4):66-69.
[
|
[18] |
李志鹏, 曹晓明, 丁杰, 等. MODIS卫星影像显示的2001—2017年中国荒漠化年度状况[J]. 中国沙漠, 2019, 39(6):135-140.
[
|
[19] |
|
[20] |
|
[21] |
宋伟东, 张亚男, 高琳, 等. 面向对象与决策树模型的辽西北地区沙化信息提取[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(3):595-601.
[
|
[22] |
滑永春, 李增元, 高志海. 面向对象分割与混合像元分解相结合提取沙化土地信息[J]. 干旱区研究, 2020, 37(5):1346-1352.
[
|
[23] |
胡钟山, 娄震, 杨静宇, 等. 基于多分类器组合的手写体数字识别[J]. 计算机学报, 1999, 22(4):369-374.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
李长龙, 高志海, 吴俊君, 等. 基于分形网络进化分割和对象特征提取的GF-1卫星数据沙化土地分类识别研究[J]. 干旱区资源与环境, 2015, 29(11):152-157.
[
|
[28] |
|
[29] |
袁磊, 沈渭寿, 李海东, 等. 雅鲁藏布江中游河谷区域风沙化土地演变趋势及驱动因素[J]. 生态与农村环境学报, 2010, 26(4):301-305.
[
|
[30] |
李永霞, 方江平. 西藏雅鲁藏布江中游地区土地沙化面积变化分析[J]. 贵州农业科学, 2011, 39(12):71-74,79.
[
|
[31] |
沈渭寿, 李海东, 林乃峰, 等. 雅鲁藏布江高寒河谷流动沙地适生植物种筛选和恢复效果[J]. 生态学报, 2012, 32(17):5609-5618.
[
|
[32] |
郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1):3-12.
[
|
[33] |
席承藩, 张俊民. 中国土壤区划的依据与分区[J]. 土壤学报, 1982, 19(2):97-109,212.
[
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
朱良, 平博, 苏奋振, 等. 多时相TM影像决策树模型的水稻识别提取[J]. 地球信息科学学报, 2013, 15(3):446-451.
[
|
[40] |
崔璐, 杜华强, 周国模, 等. 决策树结合混合像元分解的中国竹林遥感信息提取[J]. 遥感学报, 2019, 23(1):166-176.
[
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
陈秋晓, 骆剑承, 周成虎, 等. 基于多特征的遥感影像分类方法[J]. 遥感学报, 2004, 8(3):239-245.
[
|
[52] |
王文静, 张霞, 赵银娣, 等. 综合多特征的Landsat 8时序遥感图像棉花分类方法[J]. 遥感学报, 2017, 21(1):115-124.
[
|
[53] |
|
[54] |
丁凤. 一种基于遥感数据快速提取水体信息的新方法[J]. 遥感技术与应用, 2009, 24(2):167-171.
[
|
[55] |
|
[56] |
|
[57] |
|
[58] |
刘慧, 李晓英, 夏翠珍, 等. 雅鲁藏布江河谷加查-米林段沙丘成因[J]. 中国沙漠, 2020, 40(3):16-26.
[
|
[59] |
孙明, 沈渭寿, 李海东, 等. 雅鲁藏布江源区风沙化土地演变趋势[J]. 自然资源学报, 2010, 25(7):1163-1171.
[
|
/
〈 |
|
〉 |