Journal of Geo-information Science >
An Industrial Heat Source Extraction Method: BP Neural Network Using Temperature Feature Template
Received date: 2021-08-07
Request revised date: 2021-09-29
Online published: 2022-05-25
Supported by
National Natural Science Foundation of China(42171413)
National Key R&D Program of China(2017YFB0503500)
Natural Science Foundation of Shandong Province(ZR2020MD015)
Natural Science Foundation of Shandong Province(ZR2020MD018)
Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020103)
Young Teacher Development Support Program of Shandong University of Technology(4072-115016)
Copyright
Aiming at the problem of insufficient quantity and spatial refinement in the extraction of industrial heat source from annual scale thermal anomaly data, a neural network industrial heat source extraction method based on temperature feature template is proposed by using VIIRS active fire data. This study took Beijing-Tianjin-Hebei and its surrounding areas as the study area, Firstly, according to the spatial aggregation characteristics of industrial heat sources, the heat source objects were divided by the OPTICS algorithm. Secondly, according to the thermal radiation characteristics of the heat sources, the temperature characteristic template of industrial heat sources and non-industrial heat sources were constructed. Finally, the BP neural network was used to extract industrial heat source objects using the temperature feature template and heat source statistical characteristics as parameters. The results show that: (1) the extraction precision of industrial heat source of the neural network algorithm of temperature feature template proposed in this paper reached 96.31%. Compared with time filtering and logistic regression methods, the extraction precision of industrial heat sources was improved by 8.45% and 7.53%, respectively; (2) From 2015 to 2020, the number of industrial heat sources in the six provinces and cities in Beijing-Tianjin-Hebei and its surrounding areas decreased by 27.46%. The number of industrial heat source objects and heat anomalies in Hebei Province decreased by 8.06% and 7.44% annually, respectively, which was the largest decrease compared with other provinces and cities. The concentration of industrial heat sources in Shandong and Tianjin increased by 25.72% and 86.64%, respectively, indicating that the industrial transformation and upgrade policies in the two places have achieved remarkable results; (3) Tangshan, Handan, Lvliang, and Changzhi accounted for 31.37% of the total industrial heat sources in the study area, which are the main cities in Beijing-Tianjin-Hebei and its surrounding areas. The degree of industrial heat source accumulation and energy consumption in seven cities such as Linfen and Taiyuan was higher than those in other cities; The degree of industrial heat source accumulation and energy consumption in 11 cities such as Beijing and Zhoukou was lower than those in other cities; (4) From January to May 2020, the number of industrial heat anomalies in Beijing-Tianjin-Hebei and its surrounding areas remained unchanged or increased compared with the same period in 2019 and 2021. The COVID-19 had no significant impact on the industrial heat source in the study area. The number of industrial heat anomalies in Wuhan in January and February 2020 decreased by more than 66.67% compared with that in the same period in 2019 and 2021, the number of industrial heat anomalies from March to May 2020 was lower than that in the same period of 2019. The COVID-19 has had a significant impact on industrial heat sources in Wuhan from January to May 2020. This study reflects the current situation and trend of industrial heat source development in Beijing-Tianjin-Hebei and its surrounding areas, which provides a valuable reference for the formulation and adjustment of relevant policies such as reducing energy consumption and improving secondary industry concentration.
LI Bo , FAN Junfu , HAN Liusheng , SUN Guangwei , ZHANG Dafu , ZHANG Panpan . An Industrial Heat Source Extraction Method: BP Neural Network Using Temperature Feature Template[J]. Journal of Geo-information Science, 2022 , 24(3) : 533 -545 . DOI: 10.12082/dqxxkx.2022.210462
表1 VIIRS Active Fire数据关键属性信息Tab. 1 VIIRS Active Fire data key attribute information |
关键属性 | 详细信息 |
---|---|
空间分辨率 | 375 m |
下载地址 | https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data |
识别温度范围 | 400~1200 K |
研究时段 | “十三五”前后时期,即2015年1月—2020年12月 |
热异常点数量 | 699 478个 |
所含属性信息 | 中心点经纬度、时间(年/月/日/时/分)、亮度与传感器、热辐射能量等 |
表2 工业热源提取方法对比表Tab. 2 Comparison of industrial heat source extraction methods |
提取方法与精度 | 年份 | 总体 | |||||
---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | ||
温度特征模板/个 | 1131 | 1065 | 1002 | 945 | 875 | 830 | 5848 |
精度/% | 96.58 | 96.47 | 95.89 | 94.50 | 94.19 | 96.51 | 95.73 |
温度+BP神经网络/个 | 1118 | 1071 | 980 | 936 | 859 | 811 | 5775 |
精度/% | 96.80 | 96.40 | 96.27 | 96.00 | 95.23 | 97.13 | 96.31 |
时间滤波/个 | 1031 | 985 | 881 | 873 | 818 | 802 | 5390 |
精度/% | 89.26 | 85.73 | 88.45 | 85.76 | 88.34 | 90.01 | 87.86 |
逻辑回归/个 | 1151 | 1108 | 1014 | 978 | 906 | 865 | 6022 |
精度/% | 90.42 | 87.04 | 89.26 | 87.87 | 90.06 | 88.09 | 88.78 |
[1] |
周五七. 能源价格、效率增进及技术进步对工业行业能源强度的异质性影响[J]. 数量经济技术经济研究, 2016, 33(2):130-143.
[
|
[2] |
|
[3] |
金镭, 周鑫淼, 常原华. 中国传统产业和高技术产业技术创新效率的变动趋势——基于时空双维度视角[J]. 科技管理研究, 2021, 41(08):11-18.
[
|
[4] |
刘津, 李平. 智慧城市建设对工业生态效率影响的实证研究——以中国地级市为例[J]. 生态经济, 2020, 36(10):92-97.
[
|
[5] |
|
[6] |
|
[7] |
江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75(9):1860-1878.
[
|
[8] |
敖翔宇, 谈建国, 支星, 等. 上海城市热岛与热浪协同作用及其影响因子[J]. 地理学报, 2019, 74(9):1789-1802.
[
|
[9] |
饶月明, 王川, 黄华国. 联合多源遥感数据监测四川木里县森林火灾[J]. 遥感学报, 2020, 24(5):559-570.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
赖建波. 重工业热源的遥感识别及空间分布格局研究[D]. 兰州:西北师范大学, 2020.
[
|
[19] |
陈辉, 厉青, 李营, 等. 京津冀及周边地区PM2.5时空变化特征遥感监测分析[J]. 环境科学, 2019, 40(1):33-43.
[
|
[20] |
发展改革委. 全国老工业基地调整改造规划(2013-2022年)[EB/OL]. http://www.gov.cn/gongbao/content/2013/content_2441018.htm 2013-03-18.
[ National Development and Reform Commission. Adjustment and reconstruction plan for national old industrial bases (2013-2022)[EB/OL]. http://www.gov.cn/gongbao/content/2013/content_2441018.htm 2013-03-18.]
|
[21] |
大气污染防治协作小组办公室. 不信蓝天唤不回:京津冀及周边地区2017年大气污染防治攻坚战成效及经验[J]. 前线, 2018(6):76-78.
[ Office of the Collaborative Group on Air Pollution Control. The Effectiveness and experience of the 2017 air pollution prevention and control battle in Beijing-Tianjin-Hebei and surrounding areas[J]. Frontline, 2018(6):76-78. ] DOI: CNKI:SUN:QXZZ.0.2018-06-039
|
[22] |
山东省人民政府. 山东省新旧动能转换重大工程实施规划[EB/OL]. http://zwfw.sd.gov.cn/art/2018/2/23/art_1684_1455.html 2018-02-13.
[ Shandong Provincial People's Government. The implementation plan of major projects conversion of old and new kinetic energy in Shandong province[EB/OL]. http://zwfw.sd.gov.cn/art/2018/2/23/art_1684_1455.html 2018-02-13. ]
|
[23] |
国务院. 国务院关于支持山西省进一步深化改革促进资源型经济转型发展的意见[EB/OL]. http://www.gov.cn/zhengce/content/2017-09/11/content_5224274.htm 2017-09-01.
[ the State Council. Opinions of the State Council on supporting the further deepening reform and promoting the transformation and development of resource-based economy in Shanxi province[EB/OL]. http://www.gov.cn/zhengce/content/2017-09/11/content_5224274.htm 2017-09-01.]
|
[24] |
余豪. 无线电监测数据的后处理与可视化技术研究[D]. 武汉:华中科技大学, 2017.
[
|
[25] |
田智慧, 马占宇, 魏海涛. 基于密度核心的出租车载客轨迹聚类算法[J]. 计算机工程, 2021, 47(2):133-138.
[
|
[26] |
巫细波, 赖长强. 基于POI大数据的城市群功能空间结构特征研究——以粤港澳大湾区为例[J]. 城市观察, 2019(3):44-55.
[
|
[27] |
赵亚琴. 基于模糊神经网络的火灾识别算法[J]. 计算机仿真, 2015, 32(2):369-373.
[
|
[28] |
|
[29] |
山东省工业和信息化研究院课题组. 山东省工业布局特征与发展对策研究——基于第四次经济普查[J]. 现代管理科学, 2021(5):30-38.
[ Research Group of Shandong Institute of Industry and Information Technology. Study on industrial distribution characteristics and development countermeasures of Shandong province: based on the fourth economic census[J]. Modern Management Science, 2021(5):30-38. ] DOI: 10.3969/j.issn.1007-368X.2021.05.005
|
[30] |
|
[31] |
刘竹, 崔夺, 邓铸, 等. 新型冠状病毒肺炎疫情对中国2020年碳排放的影响[J]. 科学通报, 2021, 66(15):1912-1922.
[
|
[32] |
赵雪, 沈楠驰, 李令军, 等. COVID-19疫情期间京津冀大气污染物变化及影响因素分析[J]. 环境科学, 2021, 42(3):1205-1214.
[
|
[33] |
蔡晓斌, 任永鹏, 张媛, 等. 利用卫星遥感NO2监测结果分析COVID-19疫情对我国社会经济活动的短期影响[J]. 华中师范大学学报(自然科学版), 2020, 54(6):1045-1050.
[
|
[34] |
周亚端, 朱宽广, 黄凡, 等. 新冠肺炎疫情期间湖北省大气污染物减排效果评估[J]. 环境科学与技术, 2020, 43(3):228-236.
[
|
[35] |
孙佳琪, 刘永学, 董雁伫, 等. 基于Suomi-NPP VIIRS夜间热异常产品的城市工业热源分类——以京津冀地区为例[J]. 地理与地理信息科学, 2018, 34(3):13-19.
[
|
/
〈 | 〉 |