Journal of Geo-information Science >
Spatial Differentiation of Urban thermal Environment and its Influencing Factors based on Local Climate Zones in Jinan
Received date: 2021-07-30
Revised date: 2021-08-26
Online published: 2022-06-25
Supported by
National Natural Science Foundation of China(51608309)
Copyright
Different urban land surface covers and spatial structures lead to different heat island effects and different urban spatial thermal environment. Local Climate Zones (LCZ) have been widely applied in the study of urban heat island. Reasonable division of LCZ and scientific formulation of LCZ classification standards are the key technical problems in the study of urban heat island based on LCZ. In this study, the LCZ of Jinan city was divided by the urban road network, Digital Elevation Model (DEM), and big data of buildings, and the quantitative classification standard of LCZ was determined by the building height and the building density. The land surface temperature was retrieved by Landsat 8 remote sensing image, and the Kriging method was used for air temperature spatial interpolation. The urban thermal environment was expressed by land surface temperature and air temperature. Based on this, the spatial differentiation characteristics of urban thermal environment and the differences of thermal environment in the same type of LCZ were studied by the method of variance analysis, and the factors of urban thermal environment were studied by the method of correlation analysis. The results show that: (1) There were obvious differences in the spatial distribution pattern of land surface temperature and air temperature at 4:00 a.m., 8:00 a.m., and 14:00 p.m. in Jinan city. Among the four types of temperature, the number of LCZ with high temperature outliers respectively accounted for 0.25%, 1.60%, 4.05%, and 3.96% of the total LCZ in the city. The area with higher land surface temperature was located in the area with dense buildings, which includes scattered areas with higher air temperature, showing heat island effect; (2) There were obvious differences in land surface temperature and air temperature at different times of a day in different types of LCZ. The number of high air temperature outliers in the LCZ of high height and low density, the LCZ of high height and medium density, and the LCZ of medium height and low density respectively accounted for 47.37%, 33.33%, and 9.65% of the total high temperature outliers, the intraclass heat island effect of these LCZ was obvious; (3) Different types of LCZ had different intraclass heat island effects. LCZ types such as low height and low density, medium height and low density, high height and low density, and high height and medium density had significant differences in heat island effect, the p values of their variance analysis were less than 0.05; (4) The impact of building spatial distribution index on urban thermal environment was different due to different location and elevation of LCZ. Overall, the negative correlation between land surface temperature and the average values of building height reached the significant level of more than 0.05, and the positive correlation between the air temperature and average building height reached the significant level of 0.001. The average values and standard deviations of building base area and building volume, building density, and floor area ratio were significantly (p<0.001) positively correlated with urban thermal environment, which indicated a significant positive impact on the urban thermal environment.
SHAN Baoyan , ZHANG Qiao , REN Qixin , FAN Wenping , Lü Yongqiang . Spatial Differentiation of Urban thermal Environment and its Influencing Factors based on Local Climate Zones in Jinan[J]. Journal of Geo-information Science, 2022 , 24(4) : 711 -722 . DOI: 10.12082/dqxxkx.2022.210440
表1 数据来源Tab. 1 Data sources |
表2 LCZ分类标准Tab. 2 Classification standard of local climate zones |
建筑高度H/m | 建筑密度S/% | LCZ类型 |
---|---|---|
H≤9 | S≤15 | 低层低密度(LCZ11) |
15<S≤28 | 低层中密度(LCZ12) | |
S>28 | 低层高密度(LCZ13) | |
9<H≤16.14 | S≤15 | 中层低密度(LCZ21) |
15<S≤28 | 中层中密度(LCZ22) | |
S>28 | 中层高密度(LCZ23) | |
H>16.14 | S≤15 | 高层低密度(LCZ31) |
15<S≤28 | 高层中密度(LCZ32) | |
S>28 | 高层高密度(LCZ33) |
表3 气温普通克里金插值精度检验Tab. 3 Accuracy test of ordinary Kriging interpolation for air temperature |
检验值 | 时刻 | ||
---|---|---|---|
4:00 | 8:00 | 14:00 | |
平均误差 | 0.0156 | 0.0150 | 0.0086 |
均方根误差 | 0.7347 | 1.4077 | 1.4557 |
平均标准误差 | 0.0155 | 0.0078 | 0.0072 |
平均值标准化误差 | 0.5348 | 1.2113 | 1.2542 |
标准化均方根误差 | 1.3365 | 1.1501 | 1.1445 |
表4 基于LCZ的城市地表温度与气温的方差分析Tab. 4 Results of variance analysis of urban land surface temperature and air temperature based on LCZ |
方差分析 | 地表温度 | 4:00气温 | 8:00气温 | 14:00气温 |
---|---|---|---|---|
F值 | 59.21 | 24.02 | 24.9 | 20.11 |
P值 | 2.93×10-81 | 2.19×10-34 | 1.18×10-35 | 1.10×10-28 |
表5 DEM高度分级及其对应的温度平均值Tab. 5 DEM height classification and its corresponding average temperature |
类别 | 范围/m | LCZ数量/个 | 地表温度/℃ | 4:00气温/℃ | 8:00气温/℃ | 14:00气温/℃ |
---|---|---|---|---|---|---|
1 | 20.4~65.1 | 755 | 32.9 | 23.4 | 27.9 | 32.2 |
2 | 65.2~135.5 | 234 | 32.3 | 23.5 | 28.4 | 32.4 |
3 | 135.6~235.1 | 123 | 31.1 | 23.9 | 28.9 | 33.0 |
4 | 235.2~433.5 | 38 | 29.7 | 23.7 | 28.3 | 32.3 |
5 | 433.6~747.3 | 27 | 26.7 | 23.2 | 28.4 | 32.6 |
表6 济南市6月各类LCZ地表温度与气温的方差分析Tab. 6 Results of variance analysis of urban land surface temperature and air temperature in different LCZ in Jinan in June |
LCZ类型 | 地表温度 | 4:00气温 | 8:00气温 | 14:00气温 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||||
LCZ 11 | 111.64 | 0.0000 | 3.36 | 0.0103 | 28.54 | 0.0000 | 14.52 | 0.0000 | |||
LCZ 12 | 1.86 | 0.1795 | 11.99 | 0.0012 | 7.98 | 0.0070 | 2.78 | 0.1022 | |||
LCZ 13 | 1.50 | 0.2282 | 0.17 | 0.6805 | 4.02 | 0.0526 | 4.13 | 0.0495 | |||
LCZ 21 | 12.27 | 0.0000 | 4.07 | 0.0040 | 6.75 | 0.0001 | 2.93 | 0.0237 | |||
LCZ 22 | 6.05 | 0.0154 | 0.92 | 0.3391 | 0.76 | 0.3855 | 1.45 | 0.2316 | |||
LCZ 23 | 5.76 | 0.0177 | 2.01 | 0.1590 | 10.65 | 0.0014 | 3.02 | 0.0846 | |||
LCZ 31 | 22.79 | 0.0000 | 18.79 | 0.0000 | 13.16 | 0.0000 | 8.79 | 0.0000 | |||
LCZ 32 | 4.91 | 0.0086 | 20.93 | 0.0000 | 26.20 | 0.0000 | 19.67 | 0.0000 | |||
LCZ 33 | 1.57 | 0.2141 | 1.37 | 0.2452 | 0.36 | 0.5494 | 0.35 | 0.5545 |
表7 城市热环境影响因素相关分析结果Tab. 7 Results of correlation analysis of influencing factors of urban thermal environment |
区域 | 热环境 | H1 | H2 | S1 | S2 | S3 | V1 | V2 | V3 |
---|---|---|---|---|---|---|---|---|---|
5级高程 | 4:00气温 | N | N | N | N | N | N | N | N |
8:00气温 | N | N | S** | N | N | S* | N | N | |
14:00气温 | N | N | S** | N | N | S* | N | N | |
地表温度 | N | N | N | N | N | N | N | N | |
4级高程 | 4:00气温 | N | N | N | N | N | N | N | N |
8:00气温 | N | N | N | N | N | N | N | N | |
14:00气温 | N | N | N | N | N | N | N | N | |
地表温度 | N | N | N | N | N | N | S* | N | |
3级高程 | 4:00气温 | S*** | S** | N | N | S*** | S*** | N | S*** |
8:00气温 | S*** | S* | N | -S* | S** | S** | N | S*** | |
14:00气温 | S*** | S* | N | -S* | S** | S*** | N | S*** | |
地表温度 | N | N | N | N | S* | N | N | N | |
2级高程 | 4:00气温 | S*** | S*** | S*** | S*** | S*** | S*** | S*** | S*** |
8:00气温 | S*** | S*** | S*** | S*** | S*** | S*** | S*** | S*** | |
14:00气温 | S* | S* | S*** | S** | S*** | S*** | S** | S*** | |
地表温度 | -S** | -S** | N | N | S** | N | N | N | |
1级高程 | 4:00气温 | S*** | S*** | S*** | S*** | S*** | S*** | S*** | S*** |
8:00气温 | S*** | S*** | N | N | S*** | S*** | S*** | S*** | |
14:00气温 | S*** | S*** | N | N | S*** | S*** | S*** | S*** | |
地表温度 | -S* | N | S*** | S*** | S*** | N | S*** | S*** | |
全市 | 4:00气温 | S*** | S*** | S*** | S*** | S*** | S*** | S*** | S*** |
8:00气温 | S*** | S*** | S* | N | S*** | S*** | S*** | S*** | |
14:00气温 | S*** | S*** | N | N | S*** | S*** | S*** | S*** | |
地表温度 | -S* | N | S*** | S*** | S*** | N | S*** | S*** |
注:N表示相关性不显著;-S*、-S**分别表示负相关性达到了0.05、0.01的显著性水平;S*、S**、S***分别表示正相关性达到了0.05、0.01、0.001的显著性水平。 |
[1] |
江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020,75(9):1860-1878.
[
|
[2] |
刘衍, 慕凯凯, 韩冰, 等. 城市局地气候分类的地表热岛效应[J]. 哈尔滨工业大学学报, 2021,53(6):192-200.
[
|
[3] |
杨小山, 姚灵烨, 金涛, 等. 南京夏季城市局地气温时空变化特征[J]. 土木与环境工程学报(中英文), 2019,41(1):160-174.
[
|
[4] |
刘敬, 慎利, 黄媛, 等. 基于局地气候分区的北京夜间热岛强度空间分异特征研究[J]. 地理与地理信息科学, 2020,36(5):39-45,64.
[
|
[5] |
卢阳, 杨建思, 黄昕, 等. 面向局部气候带的城市形态对地表温度的影响分析[J/OL]. 武汉大学学报·信息科学版, 2020, https://doi.org/10.13203/j.whugis20200031.
[
|
[6] |
岳亚飞, 詹庆明, 王炯. 城市热环境的规划改善策略研究:以武汉市为例[J]. 长江流域资源与环境, 2018,27(2):286-295.
[
|
[7] |
沈中健, 曾坚. 厦门市热岛强度与相关地表因素的空间关系研究[J]. 地理科学, 2020,40(5):842-852.
[
|
[8] |
林中立, 徐涵秋. 基于LCZ的城市热岛强度研究[J]. 地球信息科学学报, 2017,19(5):713-722.
[
|
[9] |
蔡智, 韩贵锋. 山地城市空间形态的地表热环境效应—基于LCZ的视角[J]. 山地学报, 2018,36(4):617-627.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
岳文泽, 刘学. 基于城市控制性详细规划的热岛效应评价[J]. 应用生态学报, 2016,27(11):3631-3640.
[
|
[23] |
|
[24] |
天地图·山东省地理信息公共服务平台.http://www.sdmap.gov.cn/page/ResourceCenter.html.
[ Map world·Shandong geographic information public service platform.http://www.sdmap.gov.cn/page/ResourceCenter.html.]
|
[25] |
美国地质调查局. https://earthexplorer.usgs.gov/.
[ United States Geological Survey, USGS. https://earthexplorer.usgs.gov/.]
|
[26] |
中华人民共和国住房和城乡建设部. 民用建筑设计通则:GB50352—2005[S]. 北京: 中国建筑工业出版社, 2005.
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of civil buildings: GB50352— 2005[S]. Beijing: China Architecture and Building Press, 2005. ]
|
[27] |
中华人民共和国住房和城乡建设部. 民用建筑设计通则:GB50352—2019[S]. 北京: 中国建筑工业出版社, 2019.
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of civil buildings: GB50352—2019[S]. Beijing: China Architecture and Building Press, 2019. ]
|
[28] |
苏金明, 张莲花, 刘波 等. Matlab工具箱应用[M]. 北京: 电子工业出版社, 2004.
[
|
[29] |
|
/
〈 | 〉 |