Journal of Geo-information Science >
Multi-scale Surface Entity Cascade Update Method based on Natural Grid Network Index
Received date: 2021-07-14
Request revised date: 2021-09-04
Online published: 2022-07-25
Supported by
National Natural Science Foundation of China(42071450)
National Natural Science Foundation of China(41801396)
Copyright
The incremental cascade updating of multi-scale geospatial data is one of the important means to enhance the real time of geospatial data. The incremental cascade updating includes multi-scale data matching, correlation relationship establishment, matching and change detection, incremental information generalization, and incremental cascade update. The adjacent scale data matching is the basic of multi-scale data correlation establishment and an important foundation for the implementation of incremental cascade update. Aiming at the low accuracy and efficiency of association matching between multi-scale entities with the same name in existing methods, an incremental cascade updating method of multi-scale surface entities based on natural grid index is proposed. By building the natural grid and coding, building the surface entity and assigning code, adjacent scale entity matching and associated relationship, the corresponding steps of the correlation relationship are established, and the natural grid index is introduced into the incremental cascade update. The specific steps include: firstly, incremental packets of the same source and same scale vector spatial data are detected; secondly, the grid location of the updating entity is determined by the natural grid index, and then deleted and updated automatically or manually; and finally, the cartographic generalization and edge joining are implemented. Taking the residential elements in Hushan villiage of Ganzhou City as an example, the experimental results show that: 1) when the matching threshold is set to 0.51, compared to the direct matching method, the time consumed by the natural grid index method proposed in this paper is reduced by 88.4%, and the recall and precision are increased by 5% and 4%, respectively, which demonstrates the effectiveness of the natural grid index method in matching geographical elements between adjacent scales; 2) compared with the traditional Hausdorff distance, Euclidean distance, and centroid methods, the method proposed in this paper performs best with low time cost (1.34s), and high recall (66.5%) and precision rates (94.1%), which demonstrates the effectiveness and efficiency of the cascade update method proposed in this paper; 3) the proposed method can avoid the influence of the difference of associated residential areas, thus greatly reducing the operation time of manual editing, and effectively improving the accuracy and efficiency of multi-scale incremental cascade updating of residential entities.
JIAO Yangyang , LIU Pingzhi , XIONG Shun , XU Daozhu . Multi-scale Surface Entity Cascade Update Method based on Natural Grid Network Index[J]. Journal of Geo-information Science, 2022 , 24(5) : 851 -863 . DOI: 10.12082/dqxxkx.2022.210350
图7 居民地实体动态级联更新过程示例Fig. 7 Example of dynamic cascade updating process of residential entity |
表1 1:10 000居民地实体编码Tab. 1 Code of 1:10 000 vector residential entity |
序号 | 实体编码 |
---|---|
1 | G001132013000232-130204-1550 |
2 | G001132013000232-130102-1551 |
3 | G001132013000232-130206-1572 |
4 | G001132013000232-130102-1598 |
5 | G001132013000232-130204-1652 |
6 | G001132013000232-130204-1653 |
7 | G001132013000232-130102-1704 |
8 | G001132013000232-130102-1705 |
9 | G001132013000232-130102-1707 |
10 | G001132013000232-130204-1874 |
表2 是否采用自然格网索引的匹配结果比较Tab. 2 Comparison of matching results whether to use natural grid index |
匹配方法 | 耗时/s | 匹配数/个 | 正确数/个 | 查全率/% | 查准率/% |
---|---|---|---|---|---|
直接匹配 | 11.55 | 346 | 312 | 61.5 | 90.1 |
基于自然格网索引匹配 | 1.34 (构建格网索引耗时0.53) | 358 | 337 | 66.5 | 94.1 |
表3 3种传统匹配方法结果对比Tab. 3 Result statistics of three traditional matching methods |
匹配方法 | 耗时/s | 匹配数/个 | 正确数/个 | 查全率/% | 查准率/% |
---|---|---|---|---|---|
Hausdorff距离 | 7.59 | 305 | 277 | 52.7 | 87.5 |
欧式距离 | 8.18 | 318 | 242 | 47.7 | 76.1 |
质心包含 | 4.12 | 325 | 293 | 57.8 | 90.2 |
[1] |
|
[2] |
陈军, 王东华, 商瑶玲, 等. 国家1:50 000数据库更新工程总体设计研究与技术创新[J]. 测绘学报, 2010, 39(1):7-10.
[
|
[3] |
蒋捷, 陈军. 基础地理信息数据库更新的若干思考[J]. 测绘通报, 2000(5):1-3.
[
|
[4] |
许俊奎. 多尺度居民地要素增量级联更新方法研究[D]. 郑州:信息工程大学, 2013.
[
|
[5] |
刘建军, 李雪梅, 张元杰, 等. 国家1:25万基础地理信息数据库联动更新技术设计与工程应用[J]. 测绘通报, 2016(4):1-4.
[
|
[6] |
张鹏, 韦通, 李庆永, 等. 省市级基础地理信息框架数据联动更新探究[J]. 山东国土资源, 2016, 32(11):65-69.
[
|
[7] |
张新长, 张志强, 孙颖, 等. 模式识别的空间数据联动更新技术研究[J]. 测绘科学, 2019, 44(1):66-72.
[
|
[8] |
魏雪梅. 多级时空数据库联动增量更新方法[J]. 测绘通报, 2019(5):134-138.
[
|
[9] |
|
[10] |
罗鹏, 张俊, 王明亮, 等. 基础地理信息联动更新技术研究与应用[J]. 测绘与空间地理信息, 2017, 40(6):83-85.
[
|
[11] |
付荣祥, 吴彬卓, 叶哲璐. 地理空间数据库联动更新技术[J]. 测绘通报, 2017(5):136-138.
[
|
[12] |
方川, 白光平. 多尺度地图数据库更新机制研究及应用[J]. 测绘与空间地理信息, 2021, 44(2):86-89.
[
|
[13] |
汪艳霞, 杜清运, 任福, 等. 目标相似性的矢量数据联动更新方法[J]. 测绘科学, 2015, 40(5):106-111.
[
|
[14] |
王建丽. 面向电子地图服务的地理框架数据联动更新技术研究与实现[D]. 郑州:信息工程大学, 2015.
[
|
[15] |
|
[16] |
赵慧慧, 赵凡, 陈仁海, 等. 基于地理空间大数据的高效索引与检索算法[J]. 计算机研究与发展, 2020, 57(2):333-345.
[
|
[17] |
秦育罗, 郭冰, 孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用[J]. 测绘科学技术学报, 2020, 37(3):313-318.
[
|
[18] |
王峰, 安晓亚, 朱璇. 地理空间数据增量更新版本化管理方法研究[J]. 地理空间信息, 2021, 19(2):26-29.
[
|
[19] |
郭沛沛, 李成名, 殷勇. 建筑物合并的Delaunay三角网分类过滤法[J]. 测绘学报, 2016, 45(8):1001-1007.
[
|
[20] |
张新长, 郭泰圣, 唐铁. 一种自适应的矢量数据增量更新方法研究[J]. 测绘学报, 2012, 41(4):613-619.
[
|
[21] |
|
[22] |
|
[23] |
程昌秀. 矢量数据多尺度空间索引方法的研究[J]. 武汉大学学报信息科学版, 2009, 34(5):597-601.
[
|
[24] |
许俊奎, 武芳, 钱海忠. 多比例尺地图中居民地要素之间的关联关系及其在空间数据更新中的应用[J]. 测绘学报, 2013, 42(6):898-905,912.
[
|
[25] |
赵彬彬, 邓敏, 李光强, 等. 基于城市形态学原理的面状地物层次索引方法[J]. 测绘学报, 2010, 39(4):435-440.
[
|
[26] |
杨敏, 艾廷华, 周启. 顾及道路目标stroke特征保持的路网自动综合方法[J]. 测绘学报, 2013, 42(4):581-587,594.
[
|
[27] |
许俊奎, 武芳, 钱海忠, 等. 一种空间关系相似性约束的居民地匹配算法[J]. 武汉大学学报·信息科学版, 2013, 38(4):484-488.
[
|
[28] |
石善球. 矢量空间数据变化检测及其应用研究[J]. 测绘与空间地理信息, 2020, 43(9):25-29.
[
|
/
〈 | 〉 |