Journal of Geo-information Science >
Temporal and Spatial Characteristics of Diurnal Surface Urban Heat Island Intensity in China based on Long Time Series MODIS Data
Received date: 2021-08-31
Request revised date: 2021-12-02
Online published: 2022-07-25
Supported by
National Natural Science Foundation of China(42071346)
Fundamental Research Funds for the Central Universities(B210201013)
Natural Science Foundation of Jiangsu Province(BK20190495)
Copyright
As China's urbanization process accelerates, urban heat island is difficult to alleviate. There have been many studies on the impact of land use/cover type, city size, and urban morphology on urban heat islands. There is still a lack of research on the impact of climate background on the intensity of diurnal Surface Urban Heat Islands (SUHII) in China. To explore the temporal and spatial distribution characteristics of diurnal SUHII in different climatic regions in China, this study firstly uses the GEE cloud platform to obtain the annual and seasonal average surface temperature data of each city and the area of urban and suburban, and then calculates the SUHII of each city. The Sen's slope method and M-K non-parametric trend test method are used to calculate the temporal change trend of diurnal SUHII in China. Finally, this study discussed the spatial distribution and temporal changes of SUHII from the spatial and temporal scales. The results show that: (1) Diurnal differences: the annual average SUHII of cities in China at daytime (1.25±0.81 ℃) is higher than that at nighttime (0.79±0.43 ℃); (2) Seasonal differences: the diurnal SUHII has different results in different seasons. The daytime SUHII is high in summer and weak in winter. There are little differences between the four seasons at night; (3) Differences in climatic regions: the distribution of diurnal SUHII shows obvious spatial differentiation. The daytime SUHII in the tropics and subtropics is higher than that in temperate and plateau climate regions, with the strongest SUHII occurring in the southern subtropics and the weakest SUHII occurring in plateau climate regions. The nighttime SUHII is higher in the temperate regions than in tropical, subtropical, and plateau climate regions, with the strongest occurring in the mid-temperate regions and the weakest occurring in the northern subtropics; (4) Temporal and spatial changes: The daytime SUHII shows a non-significant downward trend (|Z|<1.96), while nighttime SUHII shows a significant upward trend (|Z|>1.96). There are seasonal differences in the inter-annual variation of diurnal SUHII. In the daytime, the upward trend of SHUII in summer are significantly higher than that in other seasons, and nighttime SHUII shows a significant upward trend in all seasons, of which SUHII has the largest upward trend in winter. Cities with a significant upward trend in the daytime are mainly distributed in the tropics and southern subtropics, and cities with a significant upward trend at night are widely distributed in the mid-temperate and warm-temperate regions.
LIU Yuxiang , YANG Yingbao , HU Jia , MENG Xiangjin , KUANG Kaixin , HU Xiejunde , BAO Yao . Temporal and Spatial Characteristics of Diurnal Surface Urban Heat Island Intensity in China based on Long Time Series MODIS Data[J]. Journal of Geo-information Science, 2022 , 24(5) : 981 -995 . DOI: 10.12082/dqxxkx.2022.210520
表1 研究数据Tab. 1 Research data |
数据类型 | 数据时间/年 | 数据介绍 | 数据来源 |
---|---|---|---|
MYD11A2 | 2003—2019 | 分辨率1 km,包括夜晚地温和白天地温,过境时间为当地太阳时的13:30和1:30 | https://lpdaac.usgs.gov/products/modis_products_table/myd11a2 |
MCD12Q1 | 2013—2019 | 分辨率500 m | https://lpdaac.usgs.gov/products/mcd12q1v006/ |
中国地市行政边界数据 | 2015 | Shape格式 | https://www.resdc.cn/data.aspx?DATAID=201 |
中国人口空间分布公里网格数据 | 2017 | 分辨率1 km,每个栅格代表该网格范围(1平方公里)内的人口数 | https://www.resdc.cn/data.aspx?DATAID=251 |
气候带数据 | 2018 | 根据资源环境科学与数据中心的中国生态地理分区数据处理生成 | https://www.resdc.cn/data.aspx?DATAID=125 |
表2 气候带差异非参数检验Tab. 2 Nonparametric test of climatic region differences |
检验统计(a,b) | |||
---|---|---|---|
克鲁斯卡尔-沃利斯 H(K) | 自由度 | 渐近显著性 | |
年际白天 | 84.603 | 6 | 3.99E-16 |
年际夜晚 | 82.501 | 6 | 1.09E-15 |
春季白天 | 102.783 | 6 | 6.58E-20 |
春季夜晚 | 121.595 | 6 | 7.54E-24 |
夏季白天 | 83.966 | 6 | 5.4E-16 |
夏季夜晚 | 76.409 | 6 | 1.97E-14 |
秋季白天 | 194.137 | 6 | 3.36E-39 |
秋季夜晚 | 45.096 | 6 | 4.48E-08 |
冬季白天 | 139.511 | 6 | 1.27E-27 |
冬季夜晚 | 161.436 | 6 | 2.94E-32 |
图7 年均城市地表热岛强度时间变化趋势分布注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2020)4619 号的标准地图制作,底图无修改。 Fig. 7 Temporal variation trend distribution of annual average SHUII |
表3 年均不同气候带Slope及Z值Tab. 3 Average annual Slope and Z value of different climatic regions |
区域 | 白天 | 夜晚 | |||
---|---|---|---|---|---|
slope值 | Z值 | slope值 | Z值 | ||
全国 | -0.0012 | -0.20 | 0.0048 | 2.01 | |
热带 | 0.019 | 2.26 | -0.00068 | -0.37 | |
南亚热带 | 0.021 | 3.17 | -0.00035 | -0.20 | |
中亚热带 | 0.0030 | 1.11 | 0.0028 | 1.02 | |
北亚热带 | 0.0080 | 1.85 | 0.0050 | 0.86 | |
暖温带 | -0.019 | -1.85 | 0.0070 | 1.77 | |
中温带 | 0.00076 | 0.04 | 0.011 | 2.26 | |
高原 | -0.0058 | -1.19 | 0.0073 | 1.60 |
表4 不同季节各气候带Slope值及Z值Tab. 4 Slope value and Z value of different climate regions in different seasons |
全国 | 热带 | 南亚热带 | 中亚热带 | 北亚热带 | 暖温带 | 中温带 | 高原气候区 | |||
---|---|---|---|---|---|---|---|---|---|---|
春季 | 白天 | Slope值 | 0.0019 | 0.03 | 0.055 | 0.015 | 0.0063 | -0.021 | -0.02 | -0.019 |
Z值 | 0.29 | 2.84 | 3.83 | 2.18 | 0.78 | -1.85 | -2.35 | -2.60 | ||
夜晚 | Slope值 | 0.0083 | 0.002 | 0.002 | 0.0085 | 0.0099 | 0.01 | 0.0091 | 0.013 | |
Z值 | 3.01 | 0.54 | 0.29 | 2.10 | 1.69 | 1.61 | 1.61 | 2.27 | ||
夏季 | 白天 | Slope值 | 0.0058 | 0.038 | 0.062 | 0.011 | 0.0025 | -0.014 | -0.016 | 0.012 |
Z值 | 0.70 | 3.01 | 3.91 | 2.02 | 0.45 | -1.19 | -3.01 | 1.44 | ||
夜晚 | Slope值 | 0.0089 | 0.0091 | 0.0066 | 0.0043 | 0.017 | 0.016 | -0.0005 | -0.0029 | |
Z值 | 2.92 | 1.28 | 2.6 | 2.43 | 3.25 | 3.09 | -0.04 | -0.45 | ||
秋季 | 白天 | Slope值 | -0.0045 | 0.008 | 0.024 | -0.0062 | -0.0079 | -0.025 | -0.0047 | -0.0033 |
Z值 | -0.62 | 1.77 | 2.68 | -1.36 | -0.95 | -2.10 | -0.62 | -0.62 | ||
夜晚 | Slope值 | 0.0082 | 0.0041 | 0.0072 | 0.0012 | 0.0079 | 0.012 | 0.0076 | 0.0064 | |
Z值 | 2.18 | 0.37 | 2.02 | 0.45 | 0.95 | 1.85 | 1.69 | 1.69 | ||
冬季 | 白天 | Slope值 | -0.0064 | 0.017 | 0.021 | 0.0002 | -0.0081 | -0.019 | -0.02 | -0.018 |
Z值 | -1.19 | 2.68 | 3.17 | 0.4 | -1.28 | -3.01 | -1.11 | -2.84 | ||
夜晚 | Slope值 | 0.012 | -0.0023 | 0.003 | 0.0055 | 0.012 | 0.019 | 0.015 | 0.016 | |
Z值 | 3.34 | -0.45 | 0.45 | 0.87 | 1.77 | 2.92 | 2.27 | 3.01 |
图8 不同季节城市地表热岛强度时间变化趋势分布注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2020)4619 号的标准地图制作,底图无修改。 Fig. 8 Temporal variation trend distribution of SHUII in different seasons |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
刘勇洪, 徐永明, 张方敏, 等. 北京城市空间形态对热岛分布影响研究[J]. 地理学报, 2021, 76(7):1662-1679.
[
|
[6] |
潘明慧, 兰思仁, 朱里莹, 等. 景观格局类型对热岛效应的影响——以福州市中心城区为例[J]. 中国环境科学, 2020,40(6):2635- 2646.90.
[
|
[7] |
陈一溥, 郑伯红. 长株潭城市群人为热排放对城市热环境影响研究[J]. 长江流域资源与环境, 2021, 30(7):1625-1637.
[
|
[8] |
|
[9] |
|
[10] |
王阳, 孙然好. 区域气候背景对城市热岛效应的影响规律[J]. 生态学报, 2021, 41(11):4288-4299.
[
|
[11] |
曹畅, 李旭辉, 张弥, 等. 中国城市热岛时空特征及其影响因子的分析[J]. 环境科学, 2017, 38(10):3987-3997.
[
|
[12] |
|
[13] |
|
[14] |
敖翔宇, 谈建国, 支星, 等. 上海城市热岛与热浪协同作用及其影响因子[J]. 地理学报, 2019, 74(9):1789-1802.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
侯浩然, 丁凤, 黎勤生. 近20年来福州城市热环境变化遥感分析[J]. 地球信息科学学报, 2018, 20(3):385-395.
[
|
[19] |
|
[20] |
|
[21] |
|
[22] |
赵安周, 裴韬, 曹森, 等. 京津冀城市扩张对植被和地表城市热岛的影响[J]. 中国环境科学, 2020, 40(4):1825-1833.
[
|
[23] |
杨智威, 陈颖彪, 吴志峰, 等. 粤港澳大湾区建设用地扩张与城市热岛扩张耦合态势研究[J]. 地球信息科学学报, 2018, 20(11):1592-1603.
[
|
[24] |
胡李发, 谢元礼, 崔思颖, 等. 关中平原城市群夏季城市热岛特征及驱动力[J]. 中国环境科学, 2021, 41(8):3842-3852.
[
|
[25] |
|
[26] |
|
[27] |
资源环境数据云平台. 中国地市行政边界数据(2015年)[DB/OL] http://www.resdc.cn/, 2017.
[ Resource and Environment Data Cloud Platform. China City Administrative Boundary Data. (2015)[DB/OL]. http://www.resdc.cn/, 2017.]
|
[28] |
人口分布数据,徐新良. 中国人口空间分布公里网格数据集[DB/OL]. 资源环境数据云平台, http://www.resdc.cn/DOI/DOI.aspx?DOIid=32, 2017, DOI:10.12078/2017121101.
[ Xv X L. China's population spatial distribution kilometer grid dataset[DB/OL]. Resource and Environment Data Cloud Platform, http://www.resdc.cn/DOI/DOI.aspx?DOIid=32, 2017, DOI:10.12078/2017121101. ]
|
[29] |
资源环境数据云平台. 中国生态地理分区数据[DB/OL]. http://www.resdc.cn/, 2018.
[ Resource and Environment Data Cloud Platform. China Ecological Geographical Area Data[DB/OL]. http://www.resdc.cn/ 2018.]
|
[30] |
|
[31] |
|
[32] |
|
[33] |
杨英宝, 苏伟忠, 江南, 等. 南京市热岛效应变化时空特征及其与土地利用变化的关系[J]. 地理研究, 2007(5):877-886,1070.
[
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
李宇, 周德成, 闫章美. 中国84个主要城市大气热岛效应的时空变化特征及影响因子[J]. 环境科学, 2021, 42(10):5037-5045.
[
|
[41] |
孙艳伟, 王润, 郭青海, 等. 基于人居尺度的中国城市热岛强度时空变化及其驱动因子解析[J]. 环境科学, 2021, 42(1):501-512.
[
|
/
〈 | 〉 |