Journal of Geo-information Science >
Spatio-temporal Changes of Vegetation in the Yellow River Basin and Related Effect of Landform based on GEE
Received date: 2021-10-29
Revised date: 2021-12-31
Online published: 2022-08-25
Supported by
The Natural Science Foundation of Henan under Grant(212300410292)
the key scientific and technological project of Henan Province under Grant(212102210137)
the key research project of higher Education of Henan Province, China under Grant(21A420006)
The Yellow River Basin serves as an ecological barrier in the eastern plain of China. Analyzing the spatiotemporal change of vegetation cover in Yellow River Basin and its topographic effects is helpful for ecological environment management. In this study, we first calculated the annual Fractional Vegetation Cover (FVC) of the Yellow River Basin for 1990—2020 through the GEE cloud computing platform using pixel binary model and Landsat images. Then, the spatiotemporal trend of FVC was obtained through Theil-Sen Median trend analysis and Mann-Kendall test. Finally, the topographic effects on FVC was quantified based on Digital Elevation Model (DEM) data (i.e., SRTM Plus) through ArcGIS. The results show that: (1) the FVC in the Yellow River Basin presented a spatial distribution of low in the northwest and high in the southeast. Low-level FVC values accounted for 45% of the entire basin area, which were mainly concentrated in the arid and semi-arid areas in the northwest; (2) the vegetation coverage in the middle of the basin was improved significantly, which accounted for 57.07% of the entire region. The degradation trend of the northwest and west region was stronger than that in other regions of the Yellow River Basin; (3) the vegetation coverage was significantly affected by the topography. High-level FVC occurred in regions where the slope was greater than 40° and the elevation was between -31~637 m. The vegetation recovery was good within the range of slope of 8~18° and elevation of 1852~2414 m. The results can provide scientific support for the ecological environment protection and high-quality development of the Yellow River Basin.
WANG Xiaolei , SHI Shouhai . Spatio-temporal Changes of Vegetation in the Yellow River Basin and Related Effect of Landform based on GEE[J]. Journal of Geo-information Science, 2022 , 24(6) : 1087 -1098 . DOI: 10.12082/dqxxkx.2022.210685
图7 1990—2020年黄河流域年平均FVC变化趋势空间分布Fig. 7 The spatial distribution of the annual average FVC change trend in the Yellow River Basin from 1990 to 2020 |
表1 FVC变化趋势统计Tab. 1 FVC change trend statistics |
SFVC | Z值 | FVC趋势变化 | 面积/km2 | 百分比/% |
---|---|---|---|---|
<-0.0005 | <-1.96 | 明显退化 | 12 280.60 | 1.19 |
<-0.0005 | -1.96~1.96 | 轻微退化 | 366 767.11 | 35.54 |
-0.0005~0.0005 | -1.96~1.96 | 稳定不变 | 63 983.00 | 6.20 |
≥0.0005 | -1.96~1.96 | 轻微改善 | 544 474.75 | 52.76 |
≥0.0005 | ≥1.96 | 明显改善 | 44 478.51 | 4.31 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
中共中央、国务院. 黄河流域生态保护和高质量发展规划纲要[EB/OL]. [2021-12-02]. http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm
[ The Central Committee of the Communist Party of China and the State Council. Outline of the Yellow River Basin Ecological Protection and High-quality Development Plan[EB/OL]. [2021-12-02]. http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm
|
[10] |
|
[11] |
张静, 杜加强, 盛芝露, 等. 1982-2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5):929-937.
[
|
[12] |
孙高鹏, 刘宪锋, 王小红, 等. 2001-2020年黄河流域植被覆盖变化及其影响因素[J]. 中国沙漠, 2021, 41(4):205-212.
[
|
[13] |
张志强, 刘欢, 左其亭, 等. 2000-2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4):849-858.
[
|
[14] |
劳聪聪, 辛沛, 左寅, 等. 1996-2020年长江口九段沙湿地植被覆盖对潮沟演变规律的影响[J]. 水科学进展. 2022, 33(1):15-26.
[
|
[15] |
|
[16] |
纪秋磊, 梁伟, 傅伯杰, 等. 基于Google Earth Engine与复杂网络的黄河流域土地利用/覆被变化分析[J]. 生态学报. 2022, 42(6):2122-2135.
[
|
[17] |
杨泽康, 田佳, 李万源, 等. 黄河流域生态环境质量时空格局与演变趋势[J]. 生态学报. 2021, 41(19):7627-7636.
[
|
[18] |
覃巧婷, 陈建军, 杨艳萍, 等. 黄河源植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 2021, 41(8):3832-3841.
[
|
[19] |
程东亚, 李旭东. 喀斯特地区植被覆盖度变化及地形与人口效应研究[J]. 地球信息科学学报, 2019, 21(8):1227-1239.
[
|
[20] |
|
[21] |
刘梁美子, 占车生, 胡实, 等. 黔桂喀斯特山区植被变化及其地形效应[J]. 地理研究, 2018, 37(12):2433-2446.
[
|
[22] |
张兴航, 张百平, 王晶, 等. 神农架林区植被分布与地形的关系研究[J]. 地球信息科学学报, 2020, 22(3):482-493.
[
|
[23] |
王毅, 郭跃. 喀斯特地貌区植被覆盖与地形因子的空间关系分析--以贵州普定县为例[J]. 长江流域资源与环境, 2018, 27(1):157-167.
[
|
[24] |
金凯, 王飞, 韩剑桥, 等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5):961-974.
[
|
[25] |
李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004(4):153-159.
[
|
[26] |
何宝忠, 丁建丽, 张喆, 等. 新疆植被覆盖度趋势演变实验性分析[J]. 地理学报, 2016, 71(11):1948-1966.
[
|
[27] |
李晶, 闫星光, 闫萧萧, 等. 基于GEE云平台的黄河流域植被覆盖度时空变化特征[J]. 煤炭学报, 2021, 46(5):1439-1450.
[
|
[28] |
陶帅, 邝婷婷, 彭文甫, 等. 2000-2015年长江上游NDVI时空变化及驱动力--以宜宾市为例[J]. 生态学报, 2020, 40(14):5029-5043.
[
|
[29] |
刘亚龙, 王庆, 毕景芝, 等. 基于Mann-Kendall方法的胶东半岛海岸带归一化植被指数趋势分析[J]. 海洋学报, 2010, 32(3):79-87.
[
|
[30] |
|
[31] |
符静, 秦建新, 张猛, 等. 2001-2013年洞庭湖流域植被覆盖度时空变化特征[J]. 地球信息科学学报, 2016, 18(9):1209-1216.
[
|
[32] |
|
[33] |
李瑶, 戴文鸿, 高嵩, 等. 黄河下游植被覆盖度动态变化及其与水沙过程关系[J]. 人民黄河: 2022, 44(4):31-37,52.
|
[34] |
裴志林, 杨勤科, 王春梅, 等. 黄河上游植被覆盖度空间分布特征及其影响因素[J]. 干旱区研究, 2019, 36(3):546-555.
[
|
[35] |
|
[36] |
赵东晓, 蔡建勤, 土小宁, 等. 黄河流域水土保持植被建设对策[J]. 中国水利, 2020(6):30-33.
[
|
/
〈 | 〉 |