Journal of Geo-information Science >
Elevation Control Points Extraction and Accuracy Validation based on ICESat-2 Data
Received date: 2021-10-25
Revised date: 2021-12-15
Online published: 2022-09-25
Supported by
Equipment Technology Basic Scientific Research Project(192WJ22007)
The horizontal positioning accuracy of ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) data reaches the meter level, and the plane positioning accuracy reaches the sub-meter level. Nevertheless, it is inevitable that poorly accurate laser footprint cannot be used as elevation control point due to various external factors. Therefore, this paper proposes a technique that employs multiple parameters to extract high-precision elevation control points from ICESat-2 data. At first, this method utilizes the built-in parameters to check the quality of the laser footprint point data, eliminating abnormal laser footprint points. The second step is to remove the elevation error in reference to the built-in Digital Elevation Model (DEM) data. The final step aims to set thresholds for fine screening to reserve the elevation points that meet the criteria of quality inspection, small slope, and low cloud cover based on attributes parameters such as cloud cover marker, slope parameter, and a time marker. Moreover, high-precision reference elevation data are also used to verify the selected elevation control points. To verify the effectiveness of the proposed technique, we employed the ICESat-2 laser data from western Zhengzhou, southwestern part of North Kodata, and northern Indiana (mean absolute height elevation is 3.711 m, 0.582 m, and 0.333 m, respectively) to extract elevation control points. Experimental results show that the mean absolute errors of laser footprints were 0.827 m, 0.393 m, and 0.131 m after screening, respectively. The extraction method can extract a certain number of high-precision elevation control points in multiple terrain scenarios. It also provides data support for 1:50 000 and 1:10 000 stereo mapping and offers references to the elevation control points extraction and elevation control point database construction throughout China or around the globe.
ZHENG Yinghui , ZHANG Yan , WANG Tao , ZHAO Xiang , ZHANG Kun , WANG Longhui . Elevation Control Points Extraction and Accuracy Validation based on ICESat-2 Data[J]. Journal of Geo-information Science, 2022 , 24(7) : 1234 -1244 . DOI: 10.12082/dqxxkx.2022.210667
图1 ATL08产品高程控制点提取流程Fig. 1 Flow chart of elevation control point extraction of ATL08 product |
表1 ATL08数据产品参数说明Tab. 1 ATL08 Data product parameter description |
参数 | 描述 |
---|---|
latitude | 每个统计单元内中心光子的纬度 |
longitude | 每个统计单元内中心光子的经度 |
dem_h | 该地理位置的最佳可用(参考来源为Arctic, GMTED, MSS, Antarctis)DEM高程,参考椭球为WGS84椭球 |
h_dif_ref | h_te_median和ref_dem之间的差值 |
h_te_best_fit | 每个统计单元内中心位置的最佳拟合地形高程,由3种拟合(线性、三阶和四阶多项式)中的最佳确定 |
h_te_interp | 标记为地面光子的插值地表高程 |
h_te_max | 标记为地面光子的地表高程的最大值 |
h_te_min | 标记为地面光子的地表高程的最小值 |
h_te_mean | 标记为地面光子的地表高程的平均值 |
h_te_median | 标记为地面光子的地表高程的中位值 |
n_te_photons | 每个统计单元内标记为地面光子的数量 |
terrain_slope | 每个统计单元内地面的沿轨方向坡度,通过线性拟合计算 |
night_flag | 夜晚标记,0=day,1=night |
cloud_flag_atm | 云量标记,取值范围为[0,10],0以上表示有云或气溶胶存在,[0,1]则表示云量小于或等于10% |
urban_flag | 城市标记,0=not_urban,1=urban |
表2 实验区高程精度验证数据Tab. 2 Elevation accuracy verification data of the test area |
实验区 | DEM数据名称 | 获取时间 | 数据源 | 坐标系统 | 高程精度 |
---|---|---|---|---|---|
郑州西部实验区 | Dengfeng_DEM_1_meter_2017 | 2017-06—2017-07 | LiDAR | 平面坐标:WGS84 高程基准:WGS84大地高 | 优于0.8 m |
北科达他州西南部实验区 | ND_KidderCO_LiDAR_2014 | 2015-04—2015-05 | LiDAR | 平面坐标:NAD83 高程基准: NAVD88 | 优于0.5 m |
印第安纳州北部实验区 | IN_Indiana_Statewide_LiDAR_2017 | 2017-03—2020-04 | LiDAR | 平面坐标:NAD83 高程基准: NAVD88 | 优于0.5 m |
表3 多参数联合的ICESt-2激光足印点的筛选结果Tab. 3 Screening results of ICEST-2 laser footprints with reference to multiple attribute parameters |
实验区 | 筛选条件 | 保留激光点数/个 | MAE/m | RMSE/m | 数据剔除率/% |
---|---|---|---|---|---|
郑州西部实验区 | 原始数据 | 22 853 | 3.711 | 5.989 | 0 |
质量检查 | 8347 | 1.261 | 2.138 | 63.48 | |
参考DEM筛选 | 8260 | 1.232 | 2.083 | 0.38 | |
坡度参数 | 2826 | 1.166 | 1.904 | 23.78 | |
云量参数 | 2724 | 1.054 | 1.671 | 0.45 | |
时间标志 | 785 | 0.827 | 1.190 | 8.48 | |
北科达他州西南部实验区 | 原始数据 | 39 741 | 0.582 | 1.759 | 0 |
质量检查 | 37 193 | 0.480 | 1.215 | 6.41 | |
参考DEM筛选 | 37 084 | 0.476 | 1.145 | 1.12 | |
坡度参数 | 28 217 | 0.462 | 1.048 | 22.59 | |
云量参数 | 28 045 | 0.441 | 0.664 | 0.43 | |
时间标志 | 11 170 | 0.393 | 0.590 | 42.46 | |
印尼安纳州北部实验区 | 原始数据 | 46 593 | 0.333 | 2.887 | 0 |
质量检查 | 41 144 | 0.153 | 0.428 | 11.70 | |
参考DEM筛选 | 41 055 | 0.150 | 0.412 | 0.19 | |
坡度参数 | 35 756 | 0.142 | 0.392 | 11.30 | |
云量参数 | 35 511 | 0.141 | 0.297 | 0.53 | |
时间标志 | 11 103 | 0.131 | 0.263 | 52.38 |
图6 筛选后的激光足印点空间分布Fig. 6 The spatial distribution image of laser footprint points after screening |
表4 不同高程控制点提取方法的结果Tab. 4 Results of extraction methods for different elevation control points |
实验区 | 高程控制点提取方法 | 保留激光点数/个 | MAE/m | RMSE/m | 数据剔除率/% |
---|---|---|---|---|---|
郑州西部实验区 | 基于参考高程数据和属性参数 | 4845 | 1.485 | 3.849 | 78.80 |
本文方法 | 785 | 0.821 | 1.190 | 96.57 | |
北科达他州西南部实验区 | 基于参考高程数据和属性参数 | 15 408 | 0.642 | 1.185 | 61.23 |
本文方法 | 11 170 | 0.393 | 0.590 | 73.01 | |
印尼安纳州北部实验区 | 基于参考高程数据和属性参数 | 22 232 | 0.351 | 0.827 | 52.29 |
本文方法 | 11 103 | 0.131 | 0.263 | 76.10 |
表5 不同属性参数(时间标志是否参与)筛选条件下的结果Tab. 5 Results under different filter conditions of attribute parameters |
实验区 | 不同属性参数筛选条件 | 保留激光点数/个 | MAE/m | RMSE/m | 数据剔除率/% |
---|---|---|---|---|---|
郑州西部实验区 | 时间标志参与筛选 | 785 | 0.821 | 1.190 | 96.57 |
时间标志不参与筛选 | 2724 | 1.054 | 1.671 | 88.09 | |
北科达他州西南部实验区 | 时间标志参与筛选 | 11 170 | 0.393 | 0.590 | 73.01 |
时间标志不参与筛选 | 18 045 | 0.441 | 0.664 | 30.55 | |
印尼安纳州北部实验区 | 时间标志参与筛选 | 11 103 | 0.131 | 0.263 | 76.10 |
时间标志不参与筛选 | 25 511 | 0.141 | 0.297 | 23.72 |
[1] |
张重阳. 基于GLAS数据的广义控制点库的建设和应用[D]. 阜新: 辽宁工程技术大学, 2015.
[
|
[2] |
李国元, 唐新明, 张重阳, 等. 多准则约束的ICEsat/GLAS高程控制点筛选[J]. 遥感学报, 2017, 21(1):96-104.
[
|
[3] |
俄相颖, 戴光耀, 吴松华. ICESat-2 ATL03数据预处理及校正方法[J]. 红外与激光工程, 2021, 50(6):92-102.
[
|
[4] |
|
[5] |
|
[6] |
National Snow&Ice Data Center. Data at NSIDC[DB/OL]. https://nsidc.org/data/icesat-2/data-sets,2020.
|
[7] |
|
[8] |
|
[9] |
董佳臣, 倪文俭, 张志玉, 等. ICESat-2植被冠层高度和地表高程数据产品用于森林高度提取的效果评价[J]. 遥感学报, 2021, 25(6):1294-1307.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
王密, 韦钰, 杨博, 等. ICESat-2/ATLAS全球高程控制点提取与分析[J]. 武汉大学学报·信息科学版, 2021, 46(2):184-192.
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
U.S. Geological Survey, 20210704. USGS 1 meter 16 x52y445 IN_Indiana_Statewide_LiDAR_2017_B17: U.S. geological survey[DB/OL]. https://www.sciencebase.gov,2021.
|
[22] |
NOAA's NGS, OCS, CO-OPS. A tutorial on Datums[DB/OL]. https://vdatum.noaa.gov/about.html,2021.
|
/
〈 | 〉 |