Journal of Geo-information Science >
Spatial-temporal Equilibrium Analysis and Attraction Area Optimization of Dockless Sharing Bicycles Connected to Subway Stations
Received date: 2021-12-03
Revised date: 2021-12-19
Online published: 2022-09-25
Supported by
National Natural Science Foundation of China(41471333)
Fujian Science and Technology Plan Guidance Project(2021H0036)
Dockless sharing bicycles are one of the most effective options for connecting to the subway. However, the uneven spatial-temporal distribution of sharing bicycles has caused great inconvenience to users and managers, especially during the morning peak period, which will greatly reduce the operating efficiency of a transportation system. Therefore, studying the characteristics of spatial-temporal distribution of dockless sharing bicycles used to connect to the subway has certain significance for improving the commuting efficiency during the morning peak period. In order to understand the spatial-temporal characteristics of feeder metro riding, this paper takes Xiamen city as the experimental area, takes the riding of feeder metro stations during the morning peak as the main research object, proposes a new method to establish the attraction area of metro stations based on travel OD, and proposes a bicycle clustering method considering metro stations based on travel characteristics. This article also analyzes the overall travel balance of each subway station during the morning rush hour from the perspective of mathematical statistics, tide ratio statistics, and the point of attraction area, and analyzes the spatial-temporal balance of cycling around subway stations at different times during the morning rush hour. Through analysis, the similarities and differences of the balance of each subway station under three perspectives are obtained. The results show that: ①According to the characteristics of the tide ratio, the connection function of the subway station for cycling can be divided into 4 categories: the start type, balanced type, arrival type, and not suitable for connecting to the subway type, reflecting the overall connection characteristics of each subway station; ②The attraction area of the subway station connecting to the riding is different from the characteristics of the tide ratio, and its main influencing factors are the geographic location of the subway station and the surrounding land use type; ③ For the analysis results of the spatial-temporal balance, the tide ratio has no significant impact on the spatial-temporal balance level, and the major influencing factor is the surrounding land use type. The analysis results can reflect the difference in the operation of sharing bicycles that connect to the surrounding subway stations during the morning rush hours in Xiamen and the efficiency of connecting to the subway, so as to support the scheduling and supervision of key areas of bicycle sharing companies.
KUANG Jiaheng , WU Qunyong . Spatial-temporal Equilibrium Analysis and Attraction Area Optimization of Dockless Sharing Bicycles Connected to Subway Stations[J]. Journal of Geo-information Science, 2022 , 24(7) : 1337 -1348 . DOI: 10.12082/dqxxkx.2022.210775
表1 厦门市地铁站点分类Tab. 1 Classification of subway stations |
地铁线路 | 类型 | |||
---|---|---|---|---|
起始型 | 均衡型 | 到达型 | 不适合接驳地铁出行型 | |
一号线 | 杏锦路、园博苑、,集美学村、 乌石浦、吕厝、莲坂 | 莲花路口、湖滨东路、中山公园 | 镇海路、高崎、塘边、文灶、 火炬园、殿前 | 一号线其他地铁站 |
二号线 | 海沧湾公园、马青路、海沧 行政中心、蔡塘、江头、吕厝 | 后埔、五缘湾、育秀东路、岭兜 | 古地石、湖滨中路、体育中心、 建业路、软件园二期 | 二号线其他地铁站 |
表2 时空均衡性特点站点分类Tab. 2 Classification of stations with characteristics of spatio-temporal balance |
时空表现较均衡站点 | 时空表现不均衡站点 |
---|---|
吕厝、乌石浦、莲花路口、莲坂、园博苑,湖滨中路、火炬园、体育中心、江头、后埔、岭兜、蔡塘 | 镇海路、中山公园,文灶、集美学村、塘边、湖滨东路、高崎、杏锦路、五缘湾、海沧湾公园、海沧行政中心、马青路、建业路、古地石、软件园二期、育秀东路 |
[1] |
高楹, 宋辞, 郭思慧, 等. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1):155-170.
[
|
[2] |
王陆一, 吴健生, 李卫锋. 中小城市公共自行车出行模式与驱动机制研究[J]. 地球信息科学学报, 2019, 21(1):25-35.
[
|
[3] |
申犁帆, 王烨, 张纯, 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018, 73(12):2423-2439.
[
|
[4] |
王家川, 欧阳松寿. 北京市轨道交通站点周边区域共享自行车运行不均衡性研究[J]. 交通运输系统工程与信息, 2019, 19(1):214-221.
[
|
[5] |
杨永崇, 柳莹, 李梁. 利用共享单车大数据的城市骑行热点范围提取[J]. 测绘通报, 2018(8):68-73.
[
|
[6] |
|
[7] |
付学梅, 隽志才. 时间维度下上海市共享单车骑行模式研究[J]. 交通运输系统工程与信息, 2020, 20(3):219-226.
[
|
[8] |
刘冬旭, 董红召. 共享自行车系统动态调度时间域的获取方法[J]. 交通运输系统工程与信息, 2018, 18(2):177-182.
[
|
[9] |
刘冬旭, 董红召. 共享自行车系统调度区域的分形树自平衡划分算法[J]. 浙江大学学报(工学版), 2018, 52(7):1275-1283.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
厦门市统计局. 厦门经济特区年鉴—2021[M]. 北京: 中国统计出版社, 2021.
[ Bureau of Statistics of Xiamen. Yearbook of Xiamen Special Economic Zone—2021[M]. Beijing: China Statistics Press, 2021. ]
|
[15] |
刘冰, 曹娟娟, 周于杰, 等. 城市公共自行车使用活动的时空间特征研究——以杭州为例[J]. 城市规划学刊, 2016(3):77-84.
[
|
[16] |
|
[17] |
徐建闽, 秦筱然, 马莹莹. 公共自行车多层次分区调度方法研究[J]. 交通运输系统工程与信息, 2017, 17(1):212-219.
[
|
[18] |
|
[19] |
|
[20] |
黄钢, 瞿伟斌, 许卉莹. 基于改进密度聚类算法的交通事故地点聚类研究[J]. 交通运输系统工程与信息, 2020, 20(5):169-176.
[
|
[21] |
邹智杰. 数据驱动的公交调度分析与优化研究——以厦门市为例[D]. 福州: 福州大学福建省空间信息工程研究中心, 2018:8.
[
|
/
〈 |
|
〉 |