Journal of Geo-information Science >
Intelligent Generalization Algorithm and Application of Area Geological Features
Received date: 2021-07-08
Revised date: 2021-08-13
Online published: 2023-02-25
Supported by
China Geological Survey Project(12120114001302)
The intelligent generalization of geological maps has the advantages of repeatability and high efficiency. Area geological features are the main elements in the geological map. It is very necessary to realize the intelligent generalization of area geological features through algorithm research in the process of downsizing of geological maps. Therefore, this paper is based on the industry experience of geological map downsizing technology, computer software development specifications, and the theoretical basis for the generalization of area geological features such as the relationship of time and geological body, the contact relationship of the geological body, and the topological rules of the area geological features. This paper designs the logical flow of the intelligent generalization algorithm based on the ArcEngine and C# development environment, designs and realizes the intelligent algorithm of the area geological features in the process of geological map generalization. The intelligent generalization algorithm first thins out the boundary point sets of the area geological features in the order from new to old, and then performs boundary smoothing on the thinned boundary point sets, and performs automatic topology inspection on the results of the generalization area geological features. Finally, the final intelligent generalization result is obtained. Take 4 geological maps of Zhengzhou, Luoyang, and surrounding areas from 1:250 000 to 1:500 000 scale as an example to generalize the area geological features, and the generalization effect of the area geological features in the geological map (1:500 000) after downsizing has been evaluated and recognized by geological experts. The general results conform to the capping relationship and topological rules of geological features. At the same time, intelligent generalization of geological features can be realized efficiently, batchwise, and accurately. The overall efficiency is greatly improved, and more than 80% of the workload can be saved. In the process of downsizing of geological maps, the intelligent generalization algorithm of area geological features has practical application value. It can realize the production transformation of theory and technology, improve the traditional work mode of geological generalization, promote the improvement of the efficiency of the geological maps downsizing, and promote the progress of industry technology. Therefore, the intelligent generalization algorithm can be used in large-scale geological map downsizing work.
YANG Cheng , ZHOU Bingfeng , YANG Zhenyu , WANG Yanggang , LI Li , HAO Lirong , ZHAO Wenji . Intelligent Generalization Algorithm and Application of Area Geological Features[J]. Journal of Geo-information Science, 2022 , 24(12) : 2322 -2332 . DOI: 10.12082/dqxxkx.2022.210379
表1 地质体接触关系表Tab. 1 Geological body contact relationship table |
序号 | 地质界线类型 | 判别标志 |
---|---|---|
1 | 整合接触 | 正常沉积地层单位之间相邻且其间未含有“角度不整合” |
2 | 不整合 | 两套地层之间出现过间断或缺失 |
3 | 平行不整合接触 | 正常沉积地层单位之间注明“平行不整合” |
4 | 角度不整合接触 | 正常沉积地层单位间被“角度不整合”分隔 |
5 | 侵入接触 | 侵入岩体与其他地质体接触,且侵入体晚于其相邻地质体 |
6 | 沉积接触 | 侵入岩体/正常沉积地层接触,侵入体早于沉积地层 |
7 | 断层接触 | 两地质体间有断层通过 |
8 | 构造接触 | “混杂岩”、“岩组”晚于围岩 |
9 | 水体接触 | 地质体与水体接触 |
10 | 其他接触 | 包括“冰雪覆盖区”界线等 |
表2 年代—地质体关系表示例Tab. 2 Relation table of time and geological body |
地质年代 | 目标图 | 原图 | 子类型 | 重要性标识 | |||||
---|---|---|---|---|---|---|---|---|---|
代号 | 名称 | 代号 | 名称 | ||||||
新生界 | 第四系 | 全新统 | Qhal | 冲积层 | Qhal | 全新统 | 0 | 0 | |
…… | |||||||||
新近系 | 上新统 | N2m | 棉凹组 | N2m | 棉凹组 | 0 | 0 | ||
古近系 | 始新统 | E2mc | 蟒川组 | E2mc | 蟒川组 | 0 | 0 | ||
…… | |||||||||
中元古界 | 蓟县系 | 汝阳群 | JxR | 汝阳群 | Jxbd | 北大尖组 | 0 | 0 | |
角度不整合 | |||||||||
熊耳群 | ChX | 熊耳群 | Chl | 龙脖组 | 0 | 0 | |||
Chx | 许山组 | 0 | 0 |
表3 面状地质要素拓扑关系表(拓扑规则含义)Tab. 3 Topological relation table of area geological features ( meaning of topological rules ) |
序号 | 地质界线类型 | 判别标志 |
---|---|---|
1 | 不能重叠 | 每个面状地质体中各要素间不能有叠加 |
2 | 不能有空隙 | 每个面状地质体中各要素间不能有个缝隙 |
3 | 节点距离必须大于聚合阈值 | 为防止面状地质体之间出现缝隙,需保证当节点距离大于聚合阈值时,2个节点会自动合并 |
4 | 必须被其他要素的要素类覆盖 | 当面状地质体和另外的地质图要素叠加时,该面图层要覆盖另外一个图层 |
5 | 必须被其他要素覆盖 | 2个面状地质体叠加时,某个地质体必须完全被另一个地质体的一个要素包含 |
6 | 面边界必须被其他要素的边界覆盖 | 当2个面状地质体图层叠加时,区域界线须一致 |
7 | 必须互相覆盖 | 2个面状地质体叠加时,必须一致覆盖同一区域 |
表4 该地区年代—地质体关系表(部分)Tab. 4 Relation table of time and geological bodies in this area (part) ) |
地质年代 | 目标图 | 郑州-豫西分区 | 子类型 | 重要性标识 | ||||
---|---|---|---|---|---|---|---|---|
代号 | 名称 | 代号 | 名称 | |||||
新生界 | 第四系 | 全新统 | Qhal | 冲积层 | Qhx | 选仁组 | 0 | 0 |
Qhx-t | 选仁组、沱阳组并层 | 0 | 0 | |||||
Qhal | 第四系全新统 | 0 | 0 | |||||
Qhal | 全新统 | 0 | 0 | |||||
Qhpal | 洪冲积层 | Qhpal | 全新统 | 0 | 0 | |||
上更新统 | Qp3pal | 洪冲积层 | QP3pal | 上更新统 | 0 | 0 | ||
Qp3pal | 上更新统 | 0 | 0 | |||||
Qp3s | 峙峪组 | 0 | 0 | |||||
Qp3s | 峙峪组 | 0 | 0 | |||||
QP3pal | 洪冲积层 | QP3pal | 上更新统 | 0 | 0 | |||
角度不整合 | ||||||||
…… | ||||||||
角度不整合 | ||||||||
长城系 | 熊耳群 | ChX | 熊耳群 | Chl | 龙脖组 | 0 | 0 | |
Chx | 许山组 | 0 | 0 | |||||
Ch1Xd | 大古石组 | 0 | 0 | |||||
新太古界 | 角度不整合 | |||||||
γοAr3 | 新太古代片麻状斜长花岗岩 | γοAr3 | 新太古代 | 1 | 0 |
表5 不同阈值情况下面状地质要素综合效果对比Tab. 5 Comparison table of generalization effect of area geological features under different thresholds |
注:长度阈值(RADIO),为有效集合中节点与初始点围成弧段的最大值Psmax与多边形周长C的比值和RADIO进行对比;面积阈值(AREA),为当前最大弧段Psmax和其前后端点所围成的面积Smax大小与AREA进行对比。 |
[1] |
徐志刚, 王岩, 陈郑辉, 等. 中国矿产地质志省级“矿产地质图”和“成矿规律图”的编图思路和编图方法[J]. 地质学报, 2020, 94(1):303-325.
[
|
[2] |
王若帆, 罗玮潇, 焦恒. Section结合Excel在贵州省1∶5万水文地质编图中的应用[J]. 西部探矿工程, 2019, 31(11):158-161.
[
|
[3] |
|
[4] |
刘炼. 地图自动综合的基本问题[J]. 科技风, 2010(22):207.
[
|
[5] |
王家耀, 钱海忠. 制图综合知识及其应用[J]. 武汉大学学报·信息科学版, 2006, 31(5):382-386,439.
[
|
[6] |
刘哲, 刘潇鹏, 吴洪涛. 基于分形理论的线状要素的地图自动综合算法实现[J]. 测绘技术装备, 2015, 17(3):22-25,21.
[
|
[7] |
肖田, 林婷, 徐容乐. 数字地图自动综合技术在国家1:50 000地形要素数据缩编更新中的应用[C]// 华东地区第十次测绘学术交流大会论文集.南昌, 2007:238-244.
|
[8] |
段佩祥, 钱海忠, 何海威, 等. 基于支持向量机的线化简方法[J]. 武汉大学学报·信息科学版, 2020, 45(5):744-752,783.
[
|
[9] |
王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10):1226-1237.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
李雯静, 李思怡. 改进的特殊地质单元综合方法——以岩脉为例[J]. 金属矿山, 2019(5):124-131.
[
|
[14] |
|
[15] |
何文娜, 朱长青, 徐可, 等. 一种小地质体智能综合方法[J]. 地球物理学进展, 2021, 36(3):1267-1275.
[
|
[16] |
|
[17] |
李丽. iMapower在1:25万地质编图中的应用及其改进[D]. 北京: 中国地质大学(北京), 2018.
[
|
[18] |
王杨刚, 郝丽荣, 黄辉, 等. 基于空间数据和专家知识驱动的地质编图技术研究与应用[J]. 地质通报, 2019, 38(12):2067-2076.
[
|
[19] |
王杨刚. 基于数据驱动的基础地质图件更新关键技术研究[D]. 北京: 中国地质大学(北京), 2016.
[
|
[20] |
何文娜, 朱长青, 李仰春, 等. 基于ArcGIS的智能地质图综合[J]. 地球物理学进展, 2020, 35(2):728-734.
[
|
[21] |
|
[22] |
郝丽荣, 王杨刚. 智绘地质(iMapower) 数字地质图编图技术应用研究[J]. 中国科技成果, 2018, 19(6):29-31.
[
|
[23] |
李仰春, 王永志, 陈圆圆, 等. 智绘地质——新一代智能化地质编图模式及应用[J]. 地质通报, 2020, 39(6):861-870.
[
|
[24] |
何文娜, 朱长青, 王永志, 等. 智绘地质——一种基于MapGIS的地质编图智能化系统[J]. 地球物理学进展, 2019, 34(5):2030-2036.
[
|
[25] |
何文娜, 朱长青, 李仰春, 等. 智能地质体综合技术在地质图缩编中的应用[J]. 地质通报, 2020, 39(6):871-879.
[
|
[26] |
刘本培, 全秋琦, 冯庆来, 等. 地史学教程(第3版)[M]. 北京: 地质出版社, 1996.
[
|
[27] |
涂亮. 基于网格模型的人脸表情合成算法研究[D]. 贵阳: 贵州大学, 2019.
[
|
/
〈 | 〉 |