Journal of Geo-information Science >
Modelling the Passenger Flow Potential of Rail Stations from the Perspective of Sustainable TOD Construction
Received date: 2022-05-17
Revised date: 2022-06-22
Online published: 2023-02-25
Supported by
Hunan Provincial Innovation Foundation for Postgraduate(CX20210968)
Hunan Provincial Social Science Achievement Review Committee Project(XSP19YBC363)
Rail transit is an important facility to alleviate urban traffic problems, and increasing the probability of passengers choosing rail transit to travel is conducive to the coordination of transportation and land use and the sustainable development of TOD. This paper proposes the concept of rail transit station passenger flow potential and constructs a station passenger flow potential calculation model based on the connotation of complex network eigenvalues and travel patterns, which provides a new perspective for TOD research by coordinating potential values with actual passenger flows. The Space-L model is constructed using POI data of Beijing railway stations, and the passenger flow potential of 364 stations in Beijing is calculated based on the station passenger flow potential model. The results show that 1) The station passenger flow potential values proposed in this paper have the dual connotation of attractiveness and carrying capacity, and can be used to quantitatively analyse the coordination between the Station Space and Station Area Traffic; 2) The spatial distribution of station passenger flow potential values in Beijing shows a "core-edge" pattern, with the most compact circles in non-work travel scenarios. The probability of the interval shows an exponential distribution for the isometric classification and a normal distribution for the isometric classification; 3) Four travel scenarios are set up according to the purpose of travel. The probability of travellers choosing rail travel differs in different scenarios. The probability of choosing rail travel is higher in the morning peak and evening peak scenarios and is less influenced by the potential value, while the probability of choosing rail travel is lower in the non-work travel scenario and is more influenced by the potential value, which is in line with reality. The verification example shows that the potential value has better interpretability and scientific validity than simply considering complex network features; 4) The coupling degree of C< 0.5 identifies the station as out of tune, where the ratio of actual passenger flow to potential value Z 1, indicating that the station is over-saturated and are prone to congestion problems, such as Xi'erqi Station, Tiantongyuanbei Station, Tiantongyuan Station, Fengtai Kejiyuan Station, etc. If Z 1, it means that the geographical advantages of the station's traffic have not been fully exploited and the passenger flow can be further improved, such as Beijingnan Station, Beiyunhexi Station, Wangjingdong Station, etc. Our results indicate that Beijing's rail transport needs to be optimised in order to improve its efficiency and achieve sustainable TOD construction.
TAN Deming , LI Yanhuan . Modelling the Passenger Flow Potential of Rail Stations from the Perspective of Sustainable TOD Construction[J]. Journal of Geo-information Science, 2022 , 24(12) : 2356 -2372 . DOI: 10.12082/dqxxkx.2022.220315
表1 城市轨道交通出行情景设定Tab. 1 Urban rail travel scenario setting |
情景编号 | 情景名称 | 出行目的 | 情景描述 | 中心性赋权 | 情景定义 |
---|---|---|---|---|---|
情景1 | 均衡情景 | 工作、游憩、购物、居住 | 长时间来看,站点3类特征具有同等重要的作用 | 综合区位优势 | |
情景2 | 早高峰情景(7:00—9:00) | 工作 | 对站点的快速疏解和快速到达目的地的特征要求较大,对客流交汇要求小 | 居住区位优势 | |
情景3 | 非工作出行情景(周末、休息) | 游憩、购物 | 对客流交汇较为重视,对快速疏解和快速到达目的地特征要求不高 | 经济区位优势 | |
情景4 | 晚高峰情景(18:00—21:00) | 居住、游憩、购物 | 注重一定的快速疏解功能,对客流交汇和快速到达目的地的需求较弱 | 工作区位优势 |
表2 4类情景的站点客流潜力值空间分布相关性Tab. 2 Correlation of the spatial distribution of site traffic potential values for the four scenarios |
情景1 | 情景2 | 情景3 | 情景4 | |
---|---|---|---|---|
情景1 皮尔逊相关性 | 1 | 0.992** | 0.999** | 0.999** |
显著性(双尾) | - | 0.000 | 0.000 | 0.000 |
个案数 | 364 | 364 | 364 | 364 |
情景2 皮尔逊相关性 | 0.992** | 1 | 0.983** | 0.995** |
显著性(双尾) | 0.000 | - | 0.000 | 0.000 |
个案数 | 364 | 364 | 364 | 364 |
情景3 皮尔逊相关性 | 0.999** | 0.983** | 1 | 0.997** |
显著性(双尾) | 0.000 | 0.000 | - | 0.000 |
个案数 | 364 | 364 | 364 | 364 |
情景1 皮尔逊相关性 | 0.999** | 0.995** | 0.997** | 1 |
显著性(双尾) | 0.000 | 0.000 | 0.000 | - |
个案数 | 364 | 364 | 364 | 364 |
注:**代表在5%的水平上显著。 |
图6 北京市站点客流潜力值等差区间概率分布Fig. 6 Probability distribution of equivariate intervals of passenger flow potential values for Beijing stations |
图8 北京市站点客流潜力值等比区间概率分布Fig. 8 Probability distribution of equiprobable intervals of passenger flow potential values for Beijing stations |
图10 北京市轨道交通客流潜力值与实际客流回归分析Fig. 10 Regression analysis between potential and actual passenger flow of rail transport in Beijing |
表3 4类情景与实际客流回归分析结果Tab. 3 Results of regression analysis of four types of scenarios and actual passenger flows |
回归分析 | 各项参数 | 线路客流潜力 | 线路复杂网络 | 早高峰进站 | 早高峰出站 | 早高峰换乘 |
---|---|---|---|---|---|---|
情景1(均衡情景) | R2 | 0.7204 | 0.6768 | 0.0018 | 0.0820 | 0.0226 |
B | 2.6659 | 1.1120 | -0.1459 | 1.8185 | 0.4311 | |
C | 0.9175 | 0.9453 | 0.7121 | 0.7943 | 0.7171 | |
情景2(早高峰情景) | R2 | 0.7244 | 0.6739 | 0.0004 | 0.0616 | 0.0150 |
B | 2.5304 | .0743 | -0.0603 | 1.3168 | 0.2905 | |
C | 0.9189 | 0.9424 | 0.7159 | 0.7884 | 0.7000 | |
情景3(非工作出行情景) | R2 | 0.7169 | 0.6757 | 0.0028 | 0.0899 | 0.0257 |
B | 2.7335 | 1.1309 | -0.1888 | 2.0694 | 0.5014 | |
C | 0.9169 | 0.9466 | 0.7095 | 0.7943 | 0.7222 | |
情景4(晚高峰情景) | R2 | 0.7202 | 0.6570 | 0.0013 | 0.0783 | 0.0207 |
B | 2.6315 | 1.8535 | -0.1220 | 1.7325 | 0.3994 | |
C | 0.9188 | 0.9466 | 0.7139 | 0.7930 | 0.7075 |
表4 耦合度检验失调的站点Tab. 4 Coupling test disorder site |
耦合度检验失调 | 早高峰进站 | 早高峰出站 | 早高峰换乘 |
---|---|---|---|
情景1(均衡情景) | 天通苑北(0.245,Z 1),古城(0,Z 1),北京南站(0.363,Z 1),北运河西(0,Z 1) | 丰台科技园(0,Z 1),望京东(0,Z 1) | 西二旗(0.318,Z 1),西苑(0,Z 1),国贸(0,Z 1) |
情景2(早高峰情景) | 天通苑北(0.281,Z 1)),古城(0,Z 1)),北京南站(0.363,Z 1),北运河西(0,Z 1) | 丰台科技园(0,Z 1),望京东(0,Z 1) | 郭公庄(0.431,Z 1),西二旗(0.236,Z 1),西苑(0,Z 1),国贸(0,Z 1) |
情景3(非工作出行情景) | 天通苑北(0.227,Z 1),天通苑(0.488,Z 1),古城(0,Z 1),北京南站(0.363,Z 1),北运河西(0,Z 1) | 丰台科技园(0,Z 1),望京东(0,Z 1) | 西二旗(0.343,Z 1),西苑(0,Z 1),国贸(0,Z 1) |
情景4(晚高峰情景) | 天通苑北(0.244,Z 1),古城(0,Z 1),北京南站(0.363,Z 1),北运河西(0,Z 1) | 丰台科技园(0,Z 1),望京东(0,Z 1) | 郭公庄(0.486,Z 1),西二旗(0.242,Z 1),西苑(0,Z 1),国贸(0,Z 1) |
[1] |
潘海啸. 面向低碳的城市空间结构——城市交通与土地使用的新模式[J]. 城市发展研究, 2010, 17(1):40-45.
[
|
[2] |
陈飞, 诸大建, 许琨. 城市低碳交通发展模型、现状问题及目标策略——以上海市实证分析为例[J]. 城市规划学刊, 2009(6):39-46.
[
|
[3] |
杨向前. 民生视域下我国特大型城市交通拥堵问题研究[J]. 城市规划, 2012, 36(1):92-96.
[
|
[4] |
汪光焘. 中国城市交通问题、对策与理论需求[J]. 城市交通, 2016, 14(6):1-9.
[
|
[5] |
冯志新, 陈颖彪, 千庆兰, 等. 东莞市交通路网格局对城市空间扩张影响研究[J]. 地球信息科学学报, 2014, 16(1):79-86.
[
|
[6] |
戢晓峰, 姜莉, 陈方. 欠发达地区城市公交底线公平的空间分异特征及成因分析——以云南省为例[J]. 人文地理, 2018, 33(1):124-129.
[
|
[7] |
张明, 刘菁. 适合中国城市特征的TOD规划设计原则[J]. 城市规划学刊, 2007(1):91-96.
[
|
[8] |
裴莹莹, 杨敏明. 城市轨道交通与常规公交耦合关系分析[J]. 交通与运输, 2021, 34(S1):121-125,141.
[
|
[9] |
高玉祥, 韩峰, 段晓峰. “一带一路”节点城市群轨道交通空间布局分析——以兰州——西宁城市群为例[J]. 测绘通报, 2018(12):114-118.
[
|
[10] |
胡昂, 刘杰, 李想, 等. 多中心城市轨道交通典型站域的土地利用特征演化研究——以日本东京为例[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(5):746-757.
[
|
[11] |
任鹏, 彭建东, 杨红, 等. 武汉市轨道交通站点周边地区职住平衡与建成环境的关系研究[J]. 地球信息科学学报, 2021, 23(7):1231-1245.
[
|
[12] |
曹哲静. 城市商业中心与交通中心的叠合与分异:基于复杂网络分析的东京轨道交通网络与城市形态耦合研究[J]. 国际城市规划, 2020, 35(3):42-53.
[
|
[13] |
滕丽, 钟楚捷, 蔡砥. 广州市地铁TOD站域的空间类型分异——基于“节点—场所—联系”耦合度模型的研究[J]. 经济地理, 2022, 42(4):103-111.
[
|
[14] |
丁川, 王耀武, 林姚宇. 公交都市战略与TOD模式关系探析——基于低碳出行的视角[J]. 城市规划, 2013, 37(11):54-61.
[
|
[15] |
|
[16] |
宋文杰, 史煜瑾, 朱青, 等. 基于节点—场所模型的高铁站点地区规划评价——以长三角地区为例[J]. 经济地理, 2016, 36(10):18-25,38.
[
|
[17] |
刘雨菡, 鲍梓婷, 田文豪. TOD站城融合发展路径与广州实践:多层级空间治理与协作式规划设计[J]. 规划师, 2022, 38(2):5-15.
[
|
[18] |
王智鹏, 罗霞. 综合交通系统条件下城市轨道交通线网规模测算[J]. 长安大学学报(自然科学版), 2015, 35(S1):193-197.
[
|
[19] |
雷斌, 张源, 郝亚睿, 等. 城市轨道交通短期客流预测研究进展[J]. 长安大学学报(自然科学版), 2022, 42(1):79-96.
[
|
[20] |
方礼君. 城市轨道交通客流相关问题研究[D]. 上海: 同济大学, 2008.
[
|
[21] |
|
[22] |
|
[23] |
|
[24] |
Barabási, Albert. Emergence of scaling in random networks[J]. Science, 1999, 286(5439),509-512. DOI:10.126/science.286.5439.509
|
[25] |
|
[26] |
陈娱, 许珺. 考虑地理距离的复杂网络社区挖掘算法[J]. 地球信息科学学报, 2013, 15(3):338-344.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
王志如, 张满银. 北京地铁网络时空演化特征评估及演化机制[J]. 经济地理, 2021, 41(4):48-56.
[
|
[37] |
|
[38] |
|
[39] |
韩昊英, 于翔, 龙瀛. 基于北京公交刷卡数据和兴趣点的功能区识别[J]. 城市规划, 2016, 40(6):52-60.
[
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
/
〈 | 〉 |