Journal of Geo-information Science >
Mapping Paddy Rice Planting Patterns based on Sentinel-1/2
Received date: 2022-07-21
Revised date: 2022-10-20
Online published: 2023-03-25
Supported by
National Natural Science Foundation of China(42171325)
National Natural Science Foundation of China(41771468)
Science Bureau of Fujian Province(2020N5002)
Fujian Natural Resources Science Innovation Project(KY-010000-04-2022-002)
Accurate and timely spatiotemporal change information of rice planting patterns is significant for effectively preventing "no-grain" and achieving carbon peak and carbon neutrality goals. However, it is challenging to establish a rice mapping method at large spatial domain. This study developed a novel paddy rice planting mapping method based on dynamic coupling optical/radar features of transplanting period. The proposed algorithm was applied to paddy rice mapping in Jiangxi and Hunan province. The derived paddy rice planting map was evaluated using 1402 ground reference sites, and it had an overall accuracy of 92.80%. The paddy rice planting area was also highly consistent with the agricultural census data (R2 > 0.85) at the county level. Compared with rice feature extraction using a fixed window, the proposed method has strong robustness and migration ability, and provides a new idea and reference for crop mapping at large spatial domain. The result showed that the paddy rice planting area in Jiangxi province decreased by 3460 km2 (9.47%) from 2018 to 2021. The rice cropping intensity in Jiangxi province had decreased by 0.13 due to the change of double-cropping rice to medium rice. The double-cropping rice planting area decreased by 21.61%, with 84% shifted to single cropping rice.
GAN Congcong , QIU Bingwen , ZHANG Jianyang , YAO Chengxin , YE Zhiyan , HUANG Heng , HUANG Yingze , PENG Yufeng , LIN Yizhen , LIN Duoduo , SU Zhonghao . Mapping Paddy Rice Planting Patterns based on Sentinel-1/2[J]. Journal of Geo-information Science, 2023 , 25(1) : 153 -162 . DOI: 10.12082/dqxxkx.2023.220532
图3 研究区实地调研点及地物类型空间分布Fig. 3 Field research points and spatial distribution of ground object types in the study area |
表1 耕地参考点数量Tab. 1 Reference point number (个) |
作物类别 | 点位数 | 作物类别 | 点位数 | 作物类别 | 点位数 | 作物类别 | 点位数 |
---|---|---|---|---|---|---|---|
单季稻 | 631 | 全年蔬菜 | 54 | 其他旱作+水稻 | 86 | 单季草皮 | 67 |
双季稻 | 587 | 荷塘 | 69 | 单季芝麻 | 33 | 大棚 | 91 |
油菜+水稻 | 356 | 经济林木 | 36 | 单季甘蔗 | 13 | 总数 | 2023 |
表2 水稻识别结果精度验证Tab. 2 Rice identification result accuracy verification |
双季稻 | 中稻 | 其他 | 生产者精度/% | F1/% | |
---|---|---|---|---|---|
双季稻 | 169/76/99 | 3/33/58 | 4/67/19 | 96.02/43.18/56.25 | 88.25/46.91/55.31 |
中稻 | 8/42/58 | 301/255/236 | 13/25/28 | 93.48/79.19/73.29 | 89.99/74.45/72.84 |
其他 | 35/30/25 | 38/75/32 | 831/779/847 | 91.92/88.12/93.69 | 94.86/88.77/94.22 |
用户精度/% | 81.64/51.35/54.40 | 86.74/70.25/72.39 | 97.80/89.44/94.74 | ||
总体精度/% | 92.80/80.32/84.31 | ||||
Kappa系数 | 0.8698/0.6661/0.7212 |
注:对于每个单元格num1/num2/num3分别表示使用本文方法、詹培等方法和桑国庆等方法精度指标。 |
图6 2019年稻制图面积与统计数据面积对比Fig. 6 Comparison of double-cropping rice mapping area and statistical data area in 2019 |
表3 2019年江西省和湖南省散点图验证参数Tab. 3 Validation parameters for scatter plots in Jiangxi Provinces and Hunan Provinces in 2019 |
散点图验证区域 | 验证方法 | 线性拟合曲线 | 决定系数R2 | 相对误差/% | 样本个数/个 |
---|---|---|---|---|---|
2019年江西省 | 詹培等方法 | y=0.5020x | 0.7715 | 98.05 | 40 |
桑国庆等方法 | y=1.1609x+166.04 | 0.5989 | -73.05 | 40 | |
本文方法 | y=0.9276x+57.1090 | 0.8558 | 16.40 | 40 | |
2019年湖南省 | 桑国庆等方法 | y=0.7890x+173.35 | 0.7890 | -36.82 | 93 |
本文方法 | y=1.0308x | 0.9189 | -7.55 | 123 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
桑国庆, 唐志光, 毛克彪, 等. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9):2409-2420.
[
|
[21] |
|
[22] |
|
[23] |
张伟, 李玮, 陶冠宏, 等. 利用STARFM模型提高复杂地表下复种指数遥感提取精度[J]. 农业工程学报, 2020, 36(21):175-185.
[
|
[24] |
邱炳文, 闫超, 黄稳清. 基于时序遥感数据的农作物种植制度研究进展与展望[J]. 地球信息科学学报, 2022, 24(1):176-188.
[
|
[25] |
|
[26] |
|
/
〈 | 〉 |