Journal of Geo-information Science >
Application of Peridynamic Theory in Regional Land Subsidence Modeling
Received date: 2022-04-05
Revised date: 2022-06-10
Online published: 2023-03-25
Supported by
National Natural Science Foundation of China(41930109)
Beijing Outstanding Young Scientist Program(BJJWZYJH01201910028032)
Land subsidence is an important factor that influences the sustainable development of a region. Due to the complexity of land subsidence, the uncertainty and risk caused by land subsidence disasters are increasing. Therefore, new methods need to be developed to quantify the nonlinear land subsidence processes, identify emerging risk, and improve urban resilience. In this paper, the necessity of introducing peridynamic to land subsidence modeling is discussed by analyzing the progress and shortcomings of current land subsidence modeling. For natural discontinuous structures such as fractures and faults, current deterministic models based on differential equations are insufficient to describe land subsidence. Therefore, the peridynamic theory which is suitable for discontinuous and nonlinear characteristics is introduced. The peridynamic theory (PD) describes the mechanical behavior of matter by solving integral equations and has advantages in analyzing discontinuous and multi-scale problems. The applicability of peridynamic in land subsidence is analyzed from the aspects of material properties and modeling methods, respectively. By establishing a peridynamic model of land subsidence, discontinuous disasters such as ground crack and ground collapse can be included, so as to realize the multi-field and multi-scale recognition of land subsidence under a unified framework. In the light of the “Higher-bigger-deeper” urban construction, combined with the CAS-ESM, the simulation of future evolution of ground subsidence and ground fractures can be carried out. However, there are still problems to be solved in the interdisciplinary research, such as the reasonable generalization of material properties, material structure, and the balance between operation accuracy and operation cost. Then, based on theoretical principles, the modeling method, solving process, and optimization method of peridynamic land subsidence model are given. Besides the establishment, solution and optimization of the model, a variety of spatial monitoring methods and data are also needed, e.g., subsidence data monitored by InSAR technology, the underground structure and density information obtained by Seismic Frequency Resonance Technology (SFRT), bedrock and stratified scale data, groundwater level data, building information data, and road network data. In this paper, a peridynamic land subsidence model with a range of 4km*6km and a depth of 0.2 km is established in Liyuan-Taihu -Zhangjiawan area in the eastern Beijing, and the evolution process of land subsidence is simulated by using the monthly average rate of groundwater level decline from 2007 to 2010 as the boundary condition. The mean absolute error between the simulated and the measured values is 18mm, which verifies the effectiveness of this interdisciplinary research. The peridynamic theory has superiority in the field of materials and the study of fatigue, damage, fracture, and so on. Our study provides new ideas and new methods for regional land subsidence modeling. Furthermore, with the support of big data, cloud computing platforms, and Geo-AI, new opportunities are emerging for preventing, controlling, slowing down, and avoiding land subsidence hazards.
ZHANG Ke , GONG Huili , LI Xiaojuan , ZHU Lin , WANG Che , CHEN Beibei , HE Jijun , GUO Lin , LYU Mingyuan , YAN Qianmeng , Li Jiangtao . Application of Peridynamic Theory in Regional Land Subsidence Modeling[J]. Journal of Geo-information Science, 2023 , 25(1) : 49 -62 . DOI: 10.12082/dqxxkx.2023.220151
表1 近场动力学键型理论与态型理论对比Tab. 1 Comparison of bond-based PD and state-based PD |
键型理论 | 态型理论 | |
---|---|---|
适用材料 泊松比 | 弹性、脆性材料 各向同性材料的泊松比限制为1/4 | 可用于流体、固体等其他材料 泊松比不固定为1/4 |
计算代价 | 计算代价较小 | 计算代价高 |
变形构型 | ![]() 物质点 和 变形前(左)与变形后(右) 两点间作用力大小相等、方向相反 | ![]() 物质点 和 变形前(左)与变形后(右) 两点间作用力大小不等、方向相反 |
注:在以δ为半径的邻域内,变形前的物质点对由 与 表示,变形后的物质点对由 与 表示, 与 分别表示两点发生的位移, f与 表示两点间作用力。 |
表2 近场动力学地面沉降模型所需数据基本信息Tab. 2 Basic information of data required for the peridynamic land subsidence model |
数据名称 | 本文数据来源 |
---|---|
实验区概化数据 | 《地面沉降及地下水位变化对地铁工程的影响研究》[40]、文献[41] |
边界条件数据(地下水位) | |
验证数据(沉降监测值) | |
模型各层材料属性 | 钻孔数据(https://zk.cgsi.cn)、文献[42] |
模型离散参数 | 结合研究实际自定 |
表3 近场动力学地面沉降模型中各层材料属性Tab. 3 Material properties of layers in the peridynamic land subsidence model |
杨氏模量(N/m2) | 泊松比 | 质量密度(kg/m3) | |
---|---|---|---|
第一压缩层组 | 5.0×106 | 0.30 | 1800 |
第一含水层组 | 1.5×108 | 0.25 | 1600 |
第二压缩层组 | 8.0×106 | 0.30 | 1800 |
第二含水层组 | 1.5×108 | 0.25 | 1600 |
第三压缩层组 | 2.0×107 | 0.30 | 1900 |
第三含水层组 | 1.5×108 | 0.25 | 1600 |
虚拟边界层 | 14.0×109 | 0.26 | 2500 |
表4 近场动力学地面沉降模型求解的离散参数Tab. 4 Discrete parameters of the peridynamic land subsidence model |
参数名称 | 参数值 |
---|---|
物质点间距∆ | 0.1 km |
单个物质点体积∆V | 1×10-3 km3 |
X方向物质点总数/个 | 60 |
Y方向物质点总数/个 | 21(含有1虚拟边界层) |
Z方向物质点总数/个 | 40 |
邻域范围δ | 3.015 ∆ |
临界伸长率 | 1(不考虑损伤)、0.044 72(考虑损伤) |
时间步长∆t | 1月 |
总时间步数T | 50月 |
[1] |
|
[2] |
李文鹏, 王龙凤, 郭海朋, 等. 中国地面沉降防治成效与对策建议[J]. 中国水利, 2021(7):32-35.
[
|
[3] |
岳建平, 方露. 城市地面沉降监控理论与技术[M]. 北京: 科学出版社, 2012.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
罗跃, 叶淑君, 吴吉春. 三维区域地面沉降数值模拟[J]. 岩土力学, 2018, 39(3):1063-1070.
[
|
[11] |
|
[12] |
罗勇, 田芳, 秦欢欢, 等. 地下水人工回灌和停采对地面沉降控制的影响分析[J]. 水资源与水工程学报, 2020, 31(1):52-57.
[
|
[13] |
万佳威, 李滨, 谭成轩, 等. 中国地裂缝的发育特征及成因机制研究——以汾渭盆地、河北平原、苏锡常平原为例[J]. 地质论评, 2019, 65(6):1383-1396.
[
|
[14] |
王艺伟, 叶淑君, 于军, 等. 中国“采水型”地裂缝特征和成因分析[J]. 高校地质学报, 2016, 22(4):741-752.
[
|
[15] |
刘方翠. 北京市平原区典型地裂缝发育特征及成因机制研究[D]. 北京: 中国地质大学(北京), 2017.
[
|
[16] |
乔丕忠, 张勇, 张恒, 等. 近场动力学研究进展[J]. 力学季刊, 2017, 38(1):1-13.
[
|
[17] |
|
[18] |
黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4):448-459.
[
|
[19] |
埃尔多安·马德西, 英额尔坎·奥特库斯著, 余音, 胡祎乐译. 近场动力学理论及其应用[M]. 上海: 上海交通大学出版社, 2019.
[
|
[20] |
|
[21] |
廖洋, 刘立胜, 刘齐文, 等. 近场动力学方法在边坡稳定性分析中的应用[J]. 安全与环境工程, 2018, 25(1):45-50.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7):2873-2881.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
王天一, 姜金荣, 迟学斌, 等. 地球系统模式CAS-ESM 2.0性能评估与分析[J]. 计算机系统应用, 2021, 30(6):9-17.
[
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
北京市轨道交通建设管理有限公司, 北京市勘察设计研究院有限公司,北京市测绘设计研究院. 地面沉降及地下水位变化对地铁工程的影响研究[M]北京: 北京市科学技术委员会, 2014.
[Beijing MTR Construction Administration Corporation, BGI Engineering Consultants Ltd. and Beijing Institute of Surveying and Mapping. Study on the influence of ground subsidence and groundwater level change on subway engineering[M]. Beijing: Beijing Municipal Science & Technology, 2014. ]
|
[41] |
罗文林, 韩煊, 杜修力, 等. 北京东部区域地下水位变化特征及其对地面沉降的影响研究[J]. 工业建筑, 2016, 46(11):127-131.
[
|
[42] |
杜钊锋. 北京典型区域不均匀地面沉降成因机制分析[D]. 北京: 首都师范大学, 2013.
[
|
[43] |
|
[44] |
|
/
〈 |
|
〉 |