Journal of Geo-information Science >
Knowledge Graph Construction Method of Gold Mine based on Ontology
Received date: 2021-12-02
Revised date: 2022-03-08
Online published: 2023-06-30
Supported by
National Natural Science Foundation of China(42171453)
National Natural Science Foundation of China(41971337)
National Key Research and Development Program(2021YFB3900903)
Geological and mineral resource survey and scientific research in "geology, geophysics, geochemistry, and remote sensing " have established a large amount of geological and mineral survey data, which contain rich knowledge related to mineralization and distribution of gold mine, such as the metallogenic and tectonic setting, geological environment of occurrence, geological characteristics of mineral mine, genesis and metallogenic model of mine, and so on. The transformation from massive mineral related data to effective metallogenic knowledge has become one of the most important breakthroughs to improve the accuracy of geological prospecting. To solve this problem, through the in-depth analysis of knowledge representation, information extraction, and knowledge fusion in knowledge engineering, this paper explores the knowledge graph construction method of gold mine based on ontology. Firstly, referring to industry norms, gold mine knowledge base, and reference material of geological and mineral resource exploration, the metallogenic model of gold mine is sorted out, and the gold mine concept, gold mine entity, gold mine relationship, gold mine geological attribute, and gold mine metallogenic attribute are determined. In addition, the schema layer of gold mine knowledge graph is constructed by using the top-down ontology knowledge representation method, which represents the conceptual model and logical basis of gold mine knowledge graph. Secondly, based on structured, semi-structured, and unstructured multi-source heterogeneous geological data, the deep learning model is used to realize gold mine knowledge extraction, semantic analysis, and knowledge fusion, which enriches the data layer of gold mine knowledge graph and provides data support for gold mine knowledge graph. The gold mine knowledge graph is constructed in a bottom-up way, and the gold mine knowledge triplet is stored by Neo4j graph database, in which nodes represent gold mine concept, gold mine entity, and gold mine attribute value, while edges represent relation and attribute. Finally, the gold mine knowledge management system is developed based on the graph database. It can be applied to the management of gold mine data, acquisition of knowledge, visualization representation of gold mine knowledge graph, inquiry of knowledge, management and presentation of knowledge base, and other functions well, so as to lay a foundation for the intelligent analysis and mining of geological big data. This study develops a geological prospecting method driven by data and knowledge, and provides a reference for identifying, controlling, and managing mineral resources, which can improve the prospecting accuracy in geological exploration.
ZHANG Chunju , LIU Wencong , ZHANG Xueying , YE Peng , WANG Chen , ZHU Shaonan , ZHANG Dayu . Knowledge Graph Construction Method of Gold Mine based on Ontology[J]. Journal of Geo-information Science, 2023 , 25(7) : 1269 -1281 . DOI: 10.12082/dqxxkx.2023.210772
表1 金矿实体知识体系分类表Tab. 1 Classification of entity knowledge system of gold mine |
一级 | 二级 | 三级 | 解释说明 |
---|---|---|---|
金矿实体的成矿地质特征 | 成矿时间 | 发现时间 | 矿产地首次发现的时间 |
成矿时代 | 矿产形成的时间 | ||
大地构造位置 | 地名 | 矿产所在地理位置的描述名称 | |
经度 | 金矿实体中心位置的地理坐标的经度 | ||
纬度 | 金矿实体中心位置的地理坐标的纬度 | ||
大地构造演化 | 地层 | 含矿地层单位名 | |
岩性 | 含矿地层中岩体主要岩性组成的名称 | ||
成矿地质构造 | 地质构造特征 | 主要褶皱及断裂的类型和性质 | |
成矿构造性质 | 矿区内主要成矿构造的性质 | ||
空间 | 方位 | 金矿实体在空间上的展布方向 | |
形态 | 金矿实体在空间上的展布形状 | ||
产状 | 倾向 | 金矿实体的倾斜方向 | |
倾角 | 金矿实体的倾斜角度 | ||
变质作用 | 围岩蚀变类型 | 与成矿有关的围岩蚀变类型 | |
变质建造 | 变质建造中富含有用矿物或元素的含矿变质建造 | ||
规模 | 规模等级 | 按探求的储量数确定金矿实体的规模等级 | |
延深 | 金矿实体的延深长度 | ||
长度 | 金矿实体的长度 | ||
厚度 | 金矿实体的厚度 |
表2 金矿实体与属性信息抽取结果Tab. 2 Extraction results of gold mine entity and attribute information (%) |
模型 | 实体 | 属性 | 总体 | ||||
---|---|---|---|---|---|---|---|
P | R | F1值 | P | R | F1值 | 均值 | |
CRF | 84.51 | 76.71 | 80.42 | 86.05 | 79.94 | 82.88 | 82.43 |
word2vec-BiLSTM-CRF | 85.63 | 85.11 | 85.34 | 83.20 | 82.62 | 82.86 | 83.20 |
BERT-BiLSTM-CRF | 89.76 | 93.50 | 91.60 | 82.86 | 91.02 | 86.70 | 87.53 |
BERT-BiLSTM-CNN-CRF | 91.41 | 94.23 | 92.79 | 85.52 | 91.07 | 88.17 | 89.10 |
表3 金矿语义关系抽取结果Tab. 3 Extraction results of semantic relationship of gold mine (%) |
模型 | 实体关系 | 属性关联关系 | |
---|---|---|---|
CNN | P | 88.89 | 90.55 |
R | 92.86 | 85.82 | |
F1 | 90.83 | 88.12 | |
Attention-BiLSTM | P | 89.72 | 88.34 |
R | 85.71 | 83.89 | |
F1 | 87.67 | 86.06 | |
Transformer | P | 88.05 | 81.91 |
R | 84.41 | 81.84 | |
F1 | 84.73 | 81.87 |
[1] |
王翔, 李景朝, 陈辉, 等. 大数据与地质资料信息服务:需求、产品、技术、共享[J]. 地质通报, 2015, 34(7):1309-1315.
[
|
[2] |
杨金中, 秦绪文, 聂洪峰, 等. 全国重点矿区矿山遥感监测综合研究[J]. 中国地质调查, 2015, 2(4):24-30.
[
|
[3] |
崔舜铫. 基于光学与雷达遥感的协同找矿信息提取研究-以西藏阿里扎西岗地区为例[D]. 北京: 中国地质大学, 2019.
[
|
[4] |
朱月琴, 谭永杰, 吴永亮, 等. 面向地质大数据的语义检索模型研究[J]. 中国矿业, 2017, 26(12):143-149.
[
|
[5] |
郑啸, 李景朝, 王翔, 等. 大数据背景下的国家地质信息服务系统建设[J]. 地质通报, 2015, 34(7):1316-1322.
[
|
[6] |
|
[7] |
魏东琦, 李磊, 赛琳伟, 等. 地质大数据:非结构化数据的存储与挖掘[M]. 北京: 地质出版社, 2020.
[
|
[8] |
|
[9] |
韩媛, 张红英, 粱楠. 大数据在地质资料管理与服务中“落地”问题分析[J]. 中国地质调查, 2016, 3(3):67-70.
[
|
[10] |
李建威, 赵新福, 邓晓东, 等. 新中国成立以来中国矿床学研究若干重要进展[J]. 中国科学:地球科学, 2019, 49(11):1720-1771.
[
|
[11] |
周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究展望[J]. 中国科学:地球科学, 2021, 51(7):1070-1079.
[
|
[12] |
肖仰华. 知识图谱:概念与技术[M]. 北京: 电子工业出版社, 2020.
[
|
[13] |
刘俊楠, 刘海砚, 陈晓慧, 等. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7):1476-1486.
[
|
[14] |
张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学, 2020, 50(7):1019-1032.
[
|
[15] |
刘俊楠, 刘海砚, 陈晓慧, 等. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7):1476-1486.
[
|
[16] |
岳丽欣, 刘文云. 国内外领域本体构建方法的比较研究[J]. 情报理论与实践, 2016, 39(08):119-125.
[
|
[17] |
陆锋, 余丽, 仇培元. 论地理知识图谱[J]. 地球信息科学学报, 2017, 19(6):723-734.
[
|
[18] |
姚健鹏, 郭艳军, 潘懋, 等. 铜矿床领域本体的构建方法研究[J]. 中国矿业, 2017, 26(8):140-145.
[
|
[19] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3):67-75.
[
|
[20] |
常青, 邱瑶, 谢苗苗, 等. 基于土地破坏的矿区生态风险评价:理论与方法[J]. 生态学报, 2012, 32(16):5164-5174.
[
|
[21] |
葛良胜. 基于地质环境成矿专属性的成矿-找矿体系[J]. 矿床地质, 2008, 27(S1):1-14.
[
|
[22] |
杨言辰, 李绪俊, 马志红. 生产矿山隐伏矿体定位预测[J]. 大地构造与成矿学, 2003, 27(1):83-90.
[
|
[23] |
中华人民共和国国土资源部. 中华人民共和国地质矿产行业标准:矿产地质勘查规范岩金DZ/T 0205-2020[S]. 北京: 地质出版社, 2020.
[Ministry of Land and Resources of the People's Republic of China. Geology and mineral resources industry standard of the People's Republic of China: Specifications for rock gold mineral exploration DZ/T 0205-2020[S]. Beijing: Geological Publishing, 2020.]
|
[24] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准:金矿石GB/T 32840-2016[S]. 北京: 中国标准出版社, 2017.
[General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard of the People's Republic of China: Gold ores GB/T 32840-2016[S]. Beijing: Standards Press of China, 2017.]
|
[25] |
中华人民共和国地质矿产部. 中华人民共和国地质矿产行业标准:固体矿产矿点(床)地质数据文件格式DZ/T 0127-1994[S]. 北京: 中国标准出版社, 1997.
[Ministry of Geology and Mineral Resources of the People's Republic of China. Geology and mineral resources industry standard of the People's Republic of China: Geological data file format of solid mineral deposit DZ/T 0127-1994[S]. Beijing: Standards Press of China, 1994.]
|
[26] |
裴荣富. 中国矿床模式[M]. 北京: 地质出版社, 1995.
[
|
[27] |
惠军华. 知识表示与处理[M]. 北京: 电子工业出版社, 2021.
[
|
[28] |
|
[29] |
|
[30] |
张春菊, 陈玉冰, 汪陈. 交互式矿产信息标注软件系统V1.0[Z]. 中国,第5448333号, 2020.
[
|
[31] |
乐小虬, 杨崇俊, 于文洋. 基于空间语义角色的自然语言空间概念提取[J]. 武汉大学学报·信息科学版, 2005(12):1100-1103.
[
|
[32] |
陈丽蓉. 顾及空间约束的多元地球化学异常识别自编码神经网络方法研究[D]. 武汉: 中国地质大学, 2019.
[
|
[33] |
吕鹏飞, 王春宁, 朱月琴. 基于文献的地质实体关系抽取方法研究[J]. 中国矿业, 2017, 26(10):167-172.
[
|
[34] |
张雪英, 叶鹏, 王曙, 等. 基于深度信念网络的地质实体识别方法[J]. 岩石学报, 2018, 34(2):9-22.
[
|
[35] |
|
[36] |
杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4):40-45.
[
|
[37] |
|
[38] |
刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用——以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11):3217-3224.
[
|
[39] |
|
[40] |
汪陈. 面向中文文献的金矿时空属性信息抽取及知识图谱可视化表达[D]. 合肥: 合肥工业大学, 2021.
[
|
[41] |
杨秀璋. 实体和属性对齐方法的研究与实现[D]. 北京: 北京理工大学, 2016.
[
|
[42] |
王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(7):2139-2174.
[
|
/
〈 |
|
〉 |