Journal of Geo-information Science >
Detection and Spatial Heterogeneity Analysis of Terrain Fragmentation on the Loess Plateau
Received date: 2022-11-16
Revised date: 2022-12-31
Online published: 2023-07-14
Supported by
General Project of National Natural Science Foundation of China(42271214)
Key Program of Natural Science Foundation of Gansu Province(21JR7RA281)
Key Program of Natural Science Foundation of Gansu Province(21JR7RA278)
Science-Technology Foundation for Young Scientists of Gansu Province(22JR11RA149)
Terrain fragmentation is an important factor that can result in poor spatial connectivity and accessibility in mountainous areas, which seriously restricts regional transportation accessibility and urban-rural integration development. This study takes the Loess Plateau with dense valleys and highly fragmented terrain as an example and constructs a terrain fragmentation index system based on DEM data for overall fragmentation, positive and negative terrain, and transition terrain. We use the spatial clustering method (Automated Zoning Procedure-Simulated Annealing) and the objective weighting method (Criteria Importance Though Intercrieria Correlation) to generate spatial zoning and evaluation grading of topographic fragmentation at the county level and explore the spatial heterogeneity of topographic fragmentation on the Loess Plateau. The results show that: (1) The general spatial distribution of terrain fragmentation indicators are characterized by contiguous clusters, among which high values of Elevation Standard Deviation and Terrain Relief are mainly located in the Longzhong Plateau and the area near the Qinling Mountains, and the low and medium values are mainly distributed in the north of Liupanshan-Weihe River; (2) The Loess Plateau can be divided into eight spatially continuous topographic fragmentation zones, and the four largest zones are located in the northern Shaanxi Plateau within the central part of the Loess Plateau, the Lvliang Mountains, and the Ordos Plateau in the north. They account for 66.37% of the total area and are distributed in a shape of Chinese character "田", while the rest of the subregions located along the western and southeastern edges of the plateau are small areas with long and narrow shapes. The spatial differentiation of the topographic fragmentation of the Loess Plateau has a simple characteristic in central area and are complex at the edge area; (3) The terrain fragmentation degree of the Loess Plateau can be divided into five levels. The highest fragmentation area accounts for 13% of the total area of the plateau, which is mainly distributed in the Longzhong Plateau and the northern part of the Qinling Mountains. And 55% of the total area of the plateau presents an spatial pattern of high in the west and low in the north, which is mainly distributed in the northern Shaanxi plateau and Shanxi plateau located in the central and eastern part of the plateau. This study provides references for the formulation of urban-rural integration development policy and transportation infrastructure planning in the Loess Plateau.
DONG Yong , ZHOU Liang , GAO Hong , WANG Bao . Detection and Spatial Heterogeneity Analysis of Terrain Fragmentation on the Loess Plateau[J]. Journal of Geo-information Science, 2023 , 25(8) : 1625 -1636 . DOI: 10.12082/dqxxkx.2023.220892
表1 地形破碎化测度指标体系Tab. 1 Index system of terrain fragmentation measurement |
指标分类 | 指标名称 | 指标缩写 | 计算方式 |
---|---|---|---|
整体破碎 | 高程标准差/m | ESD | 区域内所有像元高程值的标准差 |
流域密度/(个/km2) | WD | 根据DEM划分出区域内流域个数与区域总面积比值 | |
地形起伏度/m | TR | 区域内最高点海拔高度与最低点海拔高度的差值 | |
地表粗糙度/(m2/m2) | SR | 特定区域内地球表面积与其投影面积之比 | |
沟谷密度/(km/km2) | VD | 单位面积内的沟谷长度 | |
山脊密度/(km/km2) | RD | 单位面积内的山脊线长度 | |
正负地形 | 正地形占比/% | PTR | 高于基准高程值像元个数与区域总像元个数比值 |
负地形占比/% | NTR | 低于基准高程值像元个数与区域总像元个数比值 | |
地形过渡 | 2°~5°坡度面积比/% | S0205 | 坡度在2°~5°内的像元数与区域内总像元个数比值 |
5°~15°坡度面积比/% | S0515 | 坡度在5°~15°内的像元数与区域内总像元个数比值 | |
15°~35°坡度面积比/% | S1535 | 坡度在15°~35°内的像元数与区域内总像元个数比值 | |
35°~90°坡度面积比/% | S3590 | 坡度在35°~90°内的像元数与区域内总像元个数比值 |
注:表中所有指标缩写全称为ESD(Elevation Standard Deviation)、WD(Watershed Density)、TR(Terrain Relief)、SR(Surface Roughness)、VD(Valley Density)、RD(Ridge Density)、PTR(Positive Terrain Ratio)、NTR(Negative Terrain Ratio)、S0205(2°~5° Slope Area Ratio)、S0515 (5°~15° Slope Area Ratio)、S1535(15°~35° Slope Area Ratio)、S3590(35°~90° Slope Area Ratio)。 |
表2 CRITIC客观赋权法各指标权重系数Tab. 2 Weight coefficients of indicators of CRITIC objective weighting method |
整体破碎 | 正负地形 | 地形过渡 | |||||
---|---|---|---|---|---|---|---|
变量 | ESD | WD | PTR | NTR | S0515 | S1535 | S3590 |
权重 | 0.123 3 | 0.046 3 | 0.190 2 | 0.200 4 | 0.188 9 | 0.182 6 | 0.068 3 |
[1] |
|
[2] |
朱佩娟, 郎泽慧, 贺清云, 等. 长沙城市空间破碎化的格局特征及其影响因素[J]. 地理研究, 2020, 39(8):1739-1754.
[
|
[3] |
|
[4] |
程维明, 周成虎, 申元村, 等. 中国近40年来地貌学研究的回顾与展望[J]. 地理学报, 2017, 72(5):755-775.
[
|
[5] |
傅伯杰. 黄土高原土地利用变化的生态环境效应[J]. 科学通报, 2022, 67(32):3769-3779,3768.
[
|
[6] |
熊礼阳, 汤国安, 杨昕, 等. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 2021, 76(3):595-611.
[
|
[7] |
周亮, 党雪薇, 周成虎, 等. 中国建设用地的坡谱演化规律与爬坡影响[J]. 地理学报, 2021, 76(7):1747-1762.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
周成虎, 程维明. 《中华人民共和国地貌图集》的研究与编制[J]. 地理研究, 2010, 29(6):970-979.
[
|
[14] |
汤国安, 宋佳. 基于DEM坡度图制图中坡度分级方法的比较研究[J]. 水土保持学报, 2006, 20(2):157-160,192.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017, 46(10):1570-1591.
[
|
[19] |
封志明, 李文君, 李鹏, 等. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7):1359-1372.
[
|
[20] |
|
[21] |
|
[22] |
唐盟, 马劲松, 王颖, 等. 1947年中国南海断续线精准划定的地形依据[J]. 地理学报, 2016, 71(6):914-927.
[
|
[23] |
|
[24] |
陈述彭, 岳天祥, 励惠国. 地学信息图谱研究及其应用[J]. 地理研究, 2000, 19(4):337-343.
[
|
[25] |
蒋圣, 汤国安, 杨昕, 等. 基于DEM的黄土高原地形纹理概念模型[J]. 地球信息科学学报, 2021, 23(6):959-968.
[
|
[26] |
|
[27] |
潘竟虎, 冯娅娅. 中国农村深度贫困的空间扫描与贫困分异机制的地理探测[J]. 地理学报, 2020, 75(4):769-788.
[
|
[28] |
陈霄燕, 潘军, 邢立新, 等. 桂林-阳朔地区DEM地形特征与岩性相关性分析及分类研究[J]. 地球信息科学学报, 2019, 21(12):1867-1876.
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
王轲, 王琤, 张青峰, 等. 地形开度和差值图像阈值分割原理相结合的黄土高原沟沿线提取法[J]. 测绘学报, 2015, 44(1):67-75.
[
|
[35] |
胡胜, 邱海军, 王宁练, 等. 地形对黄土高原滑坡的影响[J]. 地理学报, 2021, 76(11):2697-2709.
[
|
[36] |
|
[37] |
|
[38] |
李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2):614-629.
[
|
[39] |
汤国安, 李发源, 刘学军. 数字高程模型教程[M]. 2版. 北京: 科学出版社, 2010.
[
|
[40] |
周启鸣, 刘学军. 数字地形分析[M]. 北京: 科学出版社, 2006.
[
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
朱阿兴, 闾国年, 周成虎, 等. 地理相似性:地理学的第三定律?[J]. 地球信息科学学报, 2020, 22(4):673-679.
[
|
/
〈 | 〉 |