Journal of Geo-information Science >
A Method for Urban Rainstorm Cascading Disaster Scenario Converting Deduction by Integrating Multi-Source Spatial Data
Received date: 2023-04-28
Revised date: 2023-06-16
Online published: 2023-12-05
Supported by
Major Research Plan of the National Natural Science Foundation of China named Big data Driven Management and Decision-making Research(91746207)
General Program of the National Natural Science Foundation of China(71774043)
Humanities and Social Sciences Foundation of the Ministry of Education of China(22YJC630095)
The converting evolution of cascading disaster scenario refers to that in the process of disaster scenario evolution, the disaster bearing bodies transform into new disaster hazards, forming a disaster chain. Rainstorm can easily cause serious secondary disasters such as waterlogging, debris flow and flood, and the combination of these secondary disasters will make the city more vulnerable. However, existing research on rainstorm cascading scenario deduction lacks the analysis of specific scenario evolution situations such as multi disaster combination, scenario element converting, and human-induced emergencies. Meanwhile, traditional research often relies on the probability inference based on existing scenario evolution networks, without providing a construction method for scenario evolution networks, making it difficult to adapt to the knowledge requirements of actual scenario situation converting deduction. To address the scenario converting evolution problems of urban rainstorm cascading disasters, this paper proposes a scenario converting deduction method for rainstorm cascading disaster response based on multi-source spatial data and probability analysis tools. First, based on local and non-local historical emergency cases, the scenario elements involved in the rainstorm cascading disaster scenarios and their potential converting paths are identified. Next, with the support of Baidu Encyclopedia and Wikipedia network knowledge resources, relevant scenario element features and their associations are extracted, and a Group Lasso machine learning method is adopted to achieve feature selection of involved scenario elements. Then, considering the multi-stage and complex scenario correlation in the process of cascading scenario evolution, a dynamic Bayesian network model for scenario converting deduction is constructed. Finally, a Markov chain Monte Carlo method is used to solve the Bayesian network and generate the converting probabilities. The proposed method is applied to the rainstorm response practice of Wuhan High-tech Zone. The use case results show that the proposed method can combine historical cases and network data to achieve rapid and effective generation of key scenario elements and their features, helping to improve the reliability of scenario converting deduction. At the same time, the proposed method supports the scenario converting deduction of small-scale disaster-bearing bodies such as geographic grids, which helps to provide more accurate rainstorm emergency decision-making support and provide good performance in visual analysis. The uncertainty analysis of the proposed method shows that the precision of original probabilities of key scenario element features and the size of generated geographic grids significantly affect the scenario converting deduction results. These findings provide important information for the local area and are expected to help the rainstorm disaster management of other jurisdictions.
LIU Zhaoge , LI Xiangyang , ZHU Xiaohan . A Method for Urban Rainstorm Cascading Disaster Scenario Converting Deduction by Integrating Multi-Source Spatial Data[J]. Journal of Geo-information Science, 2023 , 25(12) : 2329 -2339 . DOI: 10.12082/dqxxkx.2023.230236
表1 情景要素特征取值关联关系的符号描述Tab. 1 The description of symbols of the feature relationship among scenario elements |
表示符号 | 关联关系说明 |
---|---|
“与”型:情景要素特征的输入变量 在时间片段t均达到设定状态,输出变量 才能达到设定状态,即: | |
“或”型:情景要素特征的输入变量 在时间片段t至少有一个达到设定状态,输出变量 才能达到设定状态,即: |
表2 用例多源空间数据集Tab. 2 Muti-source spatial datasets in use case |
数据名称 | 数据描述 | 数据类型 | 数据量 | 数据来源 |
---|---|---|---|---|
降雨数据 | 每小时降雨量观测值 | 数值 | 168条 | 武汉东湖高新区水务局 |
地质数据 | 山体边界 | 矢量 | 65条 | 武汉市规划设计研究院 |
山体面积、土质等地质属性 | 矢量 | 65条 | 武汉市规划设计研究院 | |
地理数据 | 12 m数字高程模型(DEM) | 栅格 | 518 km2 | LocaSpaceViewer (LSV) |
地物遥感影像 | 栅格 | 518 km2 | 谷歌地球 | |
情景要素特征数据 | 暴雨转化为泥石流过程中的情景要素及其关联关系 | 文本 | 34 369条 | 百度百科 |
文本 | 14 118条 | 维基百科 |
注:表中数据的时间区间均为2016年武汉暴雨内涝期间,即2016-06-30—2016-07-06。 |
图3 用例情景态势转化的贝叶斯网络Fig. 3 The Bayesian network of scenario converting evolution in use case |
表3 情景要素特征取值状态分类规则Tab. 3 The classification rules of feature values of scenario elements |
情景要素 | 情景要素特征 | 特征取值状态 | 状态分类规则 |
---|---|---|---|
暴雨 | 降雨量强度(f1) | 降雨强 | 取值>100 mm |
降雨弱 | 取值<100 mm | ||
山体 | 固体物质补充量(f2) | 补充量大 | 取值>104 m/km2 |
补充量小 | 取值<104 m/km2 | ||
山体高程差(f3) | 坡度陡 | 取值>10 m(水平5 m) | |
坡度缓 | 取值<10 m(水平5 m) | ||
山体面积(f4) | 范围大 | 取值>10 km2 | |
范围小 | 取值<10 km2 | ||
山体土质(f5) | 酸性强 | 取值<5 | |
酸性弱 | 取值>5 | ||
泥石流 | 泥石流发生情况(f6) | 泥石流发生 | 取值=“1” |
泥石流不发生 | 取值=“0” | ||
流速(f7) | 流速快 | 取值>5 m/s | |
流速慢 | 取值<5 m/s | ||
沟床纵降比(f8) | 纵降比大 | 取值>0.2 | |
纵降比小 | 取值<0.2 | ||
横截面泥深(f9) | 泥深高 | 取值>5 m | |
泥深低 | 取值<5 m | ||
冲击力(f10) | 冲击力强 | 取值>80 kPa | |
冲击力弱 | 取值<80 kPa | ||
流量(f11) | 流量大 | 取值>50 m3 | |
流量小 | 取值<50 m3 |
表4 推演结果的不确定性分析Tab. 4 Uncertainty analysis of the deduction results |
样本序号 | 降雨量强度( f1 = 1)初始概率 | 地理网格大小 | |||||
---|---|---|---|---|---|---|---|
原始值 | 变更后 | 泥石流流量(f11 = 1)概率偏差 | 原始值/ m2 | 变更后 | 泥石流流量(f11 = 1)概率偏差 | ||
1 | 1 | 0.7 | 0.13 | 60 | 78 | 0.05 | |
2 | 0 | 0.3 | 0.25 | 100 | 130 | 0.12 | |
3 | 1 | 0.7 | 0.28 | 70 | 91 | 0.23 | |
4 | 1 | 0.7 | 0.09 | 110 | 143 | 0.18 | |
5 | 0 | 0.3 | 0.32 | 90 | 117 | 0.10 | |
6 | 1 | 0.7 | 0.16 | 80 | 104 | 0.13 | |
7 | 1 | 0.7 | 0.22 | 150 | 195 | 0.27 | |
8 | 1 | 0.7 | 0.08 | 140 | 182 | 0.30 | |
9 | 1 | 0.7 | 0.15 | 70 | 91 | 0.21 | |
10 | 0 | 0.3 | 0.21 | 50 | 65 | 0.09 | |
均值 | - | - | 0.19 | - | - | 0.17 |
[1] |
巴锐, 张宇栋, 刘奕, 等. 城市复杂灾害“三层四域”情景分析方法及应用[J]. 清华大学学报(自然科学版), 2022, 62(10):1579-1590.
[
|
[2] |
|
[3] |
朱晓寒, 李向阳, 王诗莹. 自然灾害链情景态势组合推演方法[J]. 管理评论, 2016, 28(8):143-151.
[
|
[4] |
郄子君, 荣莉莉. 面向灾害情景推演的区域模型构建方法研究[J]. 管理评论, 2020, 32(10):276-292.
[
|
[5] |
饶文利, 罗年学. 台风风暴潮情景构建与时空推演[J]. 地球信息科学学报, 2020, 22(2):187-197.
[
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
刘力丹, 朱权洁, 郑贵强, 等. 基于层次分析法和模糊综合评价法的洪涝灾害危险性评价[J]. 华北科技学院学报, 2022, 19(6):113-119.
[
|
[11] |
|
[12] |
|
[13] |
刘聪, 李会玲, 曾庆田, 等. 跨组织业务流程模型挖掘与质量评估[J]. 计算机学报, 2023, 46(3):643-656.
[
|
[14] |
刘昭阁, 李向阳, 于峰. 案例驱动的社区应急疏散准备规划启动时机识别[J]. 系统工程理论与实践, 2021, 41(3):691-701.
[
|
[15] |
刘建伟, 崔立鹏, 罗雄麟. 结构稀疏模型[J]. 计算机学报, 2017, 40(6):1309-1337.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
于新文, 丁裕国. 中国东部地区暴雨的概率特征——基于泊松分布的统计模拟[J]. 自然灾害学报, 2006, 15(4):13-18.
[
|
[20] |
程昌秀, 裴韬, 刘瑜, 等. 新时代自然灾害态势感知的实践与方法探索[J]. 地理学报, 2023, 78(3):548-557.
[
|
/
〈 | 〉 |