Journal of Geo-information Science >
A Calculation Framework of Visual Balance Index of Ubiquitous Map Images Based on Multi-factor Bayesian Decision Making
Received date: 2022-10-05
Revised date: 2022-12-13
Online published: 2024-03-26
Supported by
National Natural Science Foundation of China(42130112)
National Natural Science Foundation of China(41671407)
National Natural Science Foundation of China(41901335)
National Key Research and Development Program of China(2017YFB0503500)
Visual balance is one of the important factors that affect the effect of map information transmission. Due to the non-specialty of ubiquitous mapping, the visual balance of ubiquitous map images often depends on the cartographer's understanding of aesthetic quality, which can be unreliable. Therefore, it is necessary to develop a calculation method of visual balance index of ubiquitous map images. The existing methods for such purpose often fail to provide accurate and robust results due to use of incomplete factors and subjective parameter selection. To overcome such shortcomings, this paper proposes a framework to calculate the visual balance of ubiquitous map images by combining the computational features of map images and expert evaluation knowledge. It could effectively discriminate the complex distribution of visual balance index of ubiquitous map images by enriching the influence factors of visual density of the map and introducing the probabilistic model that learn expert evaluation knowledge for ubiquitous map images. To verify the proposed framework, we develop a visual balance benchmark dataset of ubiquitous map images by employing the evaluation data of 1730 ubiquitous map images from 30 cartographers by questionnaires investigation. The calculated map visual balance indexes are used as the map feature input of the Bayesian classification of visual balance, and the map evaluations are used as the classification results for model evaluation. And the rule of minimum error rate is used to optimize the performance of the classifier. Extensive experiments show that this calculation framework can achieve an accuracy of 82.85% in the evaluation dataset of visual balance index of ubiquitous map images constructed in our paper.
XU Yeqiu , YANG Jian , JIA Fenli , YANG Lei , GUO Liping , WANG Weiming . A Calculation Framework of Visual Balance Index of Ubiquitous Map Images Based on Multi-factor Bayesian Decision Making[J]. Journal of Geo-information Science, 2024 , 26(1) : 184 -196 . DOI: 10.12082/dqxxkx.2024.220754
表1 泛在地图图像的构图类型Tab. 1 The composition type of ubiquitous map images |
环绕式 | 嵌套式 | 分割式 | 局部放大式 | |
---|---|---|---|---|
例1 | ![]() | ![]() | ![]() | ![]() |
例2 | ![]() | ![]() | ![]() | ![]() |
表2 专家评价结果统计Tab. 2 Statistics of expert evaluation results |
平衡程度 | 地图数量/幅 | 占比/% |
---|---|---|
平衡 | 1 327 | 76.7 |
难以区分 | 159 | 9.1 |
不平衡 | 244 | 14.1 |
表3 视觉平衡度判别结果统计Tab. 3 The result statistics of visual balance discrimination |
平衡程度 | 地图数量/幅 | 准确率/% |
---|---|---|
平衡 | 398 | 93.97 |
难以区分 | 48 | 0 |
不平衡 | 73 | 76.71 |
总体 | 519 | 82.85 |
表4 计算框架判别结果示例Tab. 4 Sample results of the calculation framework |
平衡判为平衡 | 平衡判为不平衡 | 不平衡判为不平衡 | 不平衡判为平衡 | |
---|---|---|---|---|
例1 | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | |
例2 | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | |
例3 | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | |
例4 | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
[1] |
|
[2] |
高俊. 地图学四面体——数字化时代地图学的诠释[J]. 测绘学报, 2004, 33(1):6-11.
[
|
[3] |
|
[4] |
测绘学名词审定委员会. 测绘学名词-2020,2020[M]. 4版. 北京: 测绘出版社, 2020.
[Surveying and Mapping Terminology Examination and Approval Committee. Chinese terms in surveying and mapping[M]. 4th ed. Beijing: Sino Maps Press, 2020.]
|
[5] |
曹一冰, 付洪贝, 潘志超. 地图设计中的美学研究[J]. 测绘与空间地理信息, 2011, 34(1):231-233.
[
|
[6] |
李晓珊. 专题地图整饰设计与表达[J]. 测绘, 2016, 39(5):231-233.
[ The design and expression of thematic map decoration[J]. Surveying and Mapping of Sichuan, 2016, 39(5):231-233.] DOI:10.3969/j.issn.1674-5019. 2016.05.011
|
[7] |
程颉, 黄丽娜, 任福, 等. 兼顾整体协调和主题表达的地图集整饰设计[J]. 地理空间信息, 2021, 19(8):65-69,5.
[
|
[8] |
马俊, 王光霞, 崔秀飞, 等. 采用力矩平衡原理建立地图视觉平衡模型[J]. 武汉大学学报·信息科学版, 2013, 38(1):116-120.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
魏智威, 郭庆胜, 颜芬, 等. 顾及视觉规律的行政区划图自动着色回溯法[J]. 测绘学报, 2018, 47(3):396-402.
[
|
[13] |
徐建新, 张晶, 张彦霞, 等. 地图图像视觉平衡质量的定量测度模型[J]. 测绘科学, 2018, 43(7):38-43.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
魏嘉. 专题地图图面要素自动配置方法的研究[D]. 武汉: 武汉大学, 2018.
[
|
[21] |
武晓. 重庆市城市中心区沿街建筑外立面广告视觉密度阈值研究[D]. 重庆: 重庆大学, 2012.
[
|
[22] |
贾奋励, 田江鹏, 智梅霞, 等. 虚拟地理试验的地标视觉显著度模型[J]. 测绘学报, 2018, 47(8):1114-1122.
[
|
[23] |
|
[24] |
戴凌宸, 张佳婧, 彭韧, 等. 图标形状复杂度的计算度量[J]. 计算机辅助设计与图形学学报, 2017, 29(10):1786-1793.
[
|
[25] |
|
[26] |
张学工, 汪小我. 模式识别:模式识别与机器学习[M]. 4版. 北京: 清华大学出版社, 2021.
[
|
/
〈 |
|
〉 |