Journal of Geo-information Science >
The Spatial Correlation between the Distribution of Shared Accommodation and the Urban Road Network and Functional Space in Hong Kong
Received date: 2022-05-17
Revised date: 2022-08-08
Online published: 2024-03-27
Supported by
National Natural Science Foundation of China(41771153)
Tourism is an important part of the service industry. As the third space connecting the city and tourists and the main place for recreation and reception, the distribution pattern and spatial process of the tourism accommodation industry play an important role in promoting the co-evolution of the urban spatial structure. Under the background of informatization connection of supply and demand, improvement of transportation capacity, and multi-center development of cities, the site selection decision of the urban accommodation industry has shifted from focusing on traditional factors such as land rent, policy constraints, and consumption thresholds to comprehensively considering spatial factors such as the convenience of the transportation network and the proximity of service facilities. Shared accommodation is a typical representative of non-standard accommodation, that is, the house owner temporarily rents out all or part of the idle house to the lodger relying on the two-way trading platform on the Internet. Since entering the Chinese market in 2015, Airbnb has become a pioneer in the shared accommodation industry in China. Using space syntax and co-location quotient theory, combined with GIS spatial analysis technology, this paper selects the data of Airbnb's active listings, star-rated hotels, urban road network, and points of interest in Hong Kong in 2021 to construct the 'point-line-surface' research framework of 'accommodation unit-traffic axis-functional space' and analyze the spatial layout patterns of shared accommodation and traditional hotels, as well as the structural correlation characteristics with the form of urban road network and urban functional space. The results show that the shared accommodation presents the banded and clumpy distribution in the city center, and forms sub-cores in some new towns, transportation hubs, and tourist islands. Compared with traditional hotels, the shared accommodation is more affected by the road network form, and has higher requirements for traffic passing ability and neighborhood interaction space in visiting communities. On a global scale, the shared accommodation is more inclined to consider agglomeration effects and positive spillover effects when selecting locations. At the local scale, the shared accommodation mainly forms three types of associations with urban functional space: cluster-like association, group-like association, and scatter-like association. The correlation effect between the shared accommodation and the dining space is the most significant. This paper has theoretical significance and practical value for accurately understanding the multi-scale spatial distribution pattern of shared accommodation under the diversified consumption demands of modern cities, promoting the diversified and sustainable development of the urban accommodation industry, and guiding the rational and orderly allocation of urban recreational service resources.
JIANG Yifei , ZHANG Honglei , LI Mimi , SHEN Caiyun , ZHAI Shiyu . The Spatial Correlation between the Distribution of Shared Accommodation and the Urban Road Network and Functional Space in Hong Kong[J]. Journal of Geo-information Science, 2024 , 26(2) : 367 -380 . DOI: 10.12082/dqxxkx.2024.220318
表1 研究数据Tab. 1 Research data |
数据 | 数据类型 | 来源 | 年份 | 特征 |
---|---|---|---|---|
香港Airbnb数据 | 房源点数据 | Inside Airbnb网站 (http://insideairbnb.com/) | 2021 | 经数据清洗与预处理后共6 538个房源 |
香港传统酒店数据 | 酒店点数据 | 携程网站 (https://www.ctrip.com/) | 2021 | 选取香港四星级以上酒店共134家 |
香港功能空间数据 | POI数据 | OSM网站 (http://www.openstreetmap.org/) | 2021 | 基于百度POI分类体系划分POI数据,选取美食餐饮(餐厅)、休闲购物(百货公司、商场、超市)、旅游景点(景点、观景点)、休闲娱乐(电影院、夜店、体育中心)、文化传媒(艺术中心、图书馆、博物馆、剧院)共5大类、13小类,3 734个POI数据 |
香港路网数据 | 矢量数据 | OSM网站 (http://www.openstreetmap.org/) | 2021 | 选取能够反映城市整体路网架构的主干道、次干道、高架及快速路,经拓扑关系检查后共14 806条道路 |
表2 Airbnb和酒店与空间句法参数的相关系数Tab. 2 Correlation coefficients of Airbnb & hotels with space syntax parameters |
I | I1400 | N | N1400 | N+I | N1400+I1400 | N+N1400 | I+I1400 | |
---|---|---|---|---|---|---|---|---|
Airbnb | 0.450** | 0.462** | 0.445** | 0.436** | 0.449** | 0.459** | 0.439** | 0.456** |
酒店 | 0.267** | 0.273** | 0.266** | 0.259** | 0.268** | 0.270** | 0.262** | 0.270** |
注:**表示相关系数在0.01水平上显著。 |
表3 Airbnb和酒店被城市功能区位吸引的全局协同区位商(带宽为1、10和25)Tab. 3 GCLQ of Airbnb and hotels attracted by urban functional locations (bandwidths of 1, 10 and 25) |
GCLQ | Airbnb | 酒店 | 美食餐饮 | 休闲购物 | 旅游景点 | 休闲娱乐 | 文化传媒 | |
---|---|---|---|---|---|---|---|---|
Airbnb | 带宽为1 | 1.351** | 0.280** | 0.501** | 0.604** | 0.248** | 0.567** | 0.440** |
带宽为10 | 1.283** | 0.351** | 0.650** | 0.604** | 0.259** | 0.581** | 0.465** | |
带宽为25 | 1.245** | 0.366** | 0.729** | 0.627** | 0.277** | 0.659** | 0.473** | |
酒店 | 带宽为1 | 0.300** | 15.164** | 0.278** | 0.422** | 0.569* | 0.211* | 0.395* |
带宽为10 | 0.411** | 12.881** | 0.368** | 0.589** | 0.432** | 0.768* | 0.519** | |
带宽为25 | 0.477** | 11.790** | 0.433** | 0.571** | 0.328** | 0.640** | 0.481** |
注:**表示协同区位商在0.01水平上显著,*表示协同区位商在0.05水平上显著。 |
表4 主要研究结果Tab. 4 Main research results |
研究结果 | Airbnb | 传统酒店 | ||
---|---|---|---|---|
分布核心 | 主核心 | 维多利亚港两岸中心城区 | 维多利亚港两岸中心城区 | |
次核心 | 新市镇、交通枢纽、旅游名胜岛屿 | — | ||
距离衰减 | 不明显 | 明显(商业核心区→外围) | ||
集聚特征 | 集聚分布 | |||
路网相关性 | 全局 | 中度相关 | 弱相关 | |
局域 | 受交通穿行度影响较大,关注内部交通和邻里交互 | 对交通设施依赖性不强 | ||
功能区位关联性 | 全局 | 关联强度 | 较弱 | 较弱 |
关联方向 | 自身关联效应明显,有依附休闲购物、休闲娱乐、美食餐饮空间的倾向 | 自身关联效应明显 | ||
局域 | 关联模式 | 簇状关联、组团状关联、散点状关联 | ||
关联效应 | 与美食餐饮空间关联效应最强烈,呈簇状关联 与休闲娱乐和文化传媒空间呈组团状+散点状关联 与传统酒店在住宿业发展成熟密集区呈簇状关联 | 相对独立分布,仅在油尖旺区与Airbnb呈散点状关联 |
[1] |
王慧芳, 周恺. 2003—2013年中国城市形态研究评述[J]. 地理科学进展, 2014, 33(5):689-701.
[
|
[2] |
|
[3] |
胡添, 刘涛, 杜萍, 等. 空间同位模式支持下城市服务业关联发现及特征分析[J]. 地球信息科学学报, 2021, 23(6):969-978.
[
|
[4] |
张红, 蓝天, 李志林. 分形城市研究进展:从几何形态到网络关联[J]. 地球信息科学学报, 2020, 22(4):827-841.
[
|
[5] |
龙飞, 戴学锋, 虞虎. 基于路网形态的上海住宿业空间布局特征[J]. 地理科学进展, 2021, 41(9):1569-1577.
[
|
[6] |
王英杰, 张桐艳, 李鹏, 等. GIS在中国旅游资源研究与应用中的现状及趋势[J]. 地球信息科学学报, 2020, 22(4):751-759.
[
|
[7] |
闫丽英, 韩会然, 陈婉婧, 等. 北京市住宿业空间分布格局及影响因素研究[J]. 经济地理, 2014, 34(1):94-101.
[
|
[8] |
曹小曙, 梁斐雯, 陈慧灵. 特大城市空间形态差异对交通网络效率的影响[J]. 地理科学, 2019, 39(1):41-51.
[
|
[9] |
李一曼, 修春亮, 孔翔. 浙江陆路交通对区域旅游空间结构及发展的影响研究[J]. 地理科学, 2018, 38(12):2066-2073.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
周恺, 和琳怡, 张一雯. 共享短租平台的概念发展、市场影响和空间交互关系研究综述[J]. 地理科学进展, 2020, 39(11):1934-1943.
[
|
[32] |
胡姗, 杨兴柱, 王群. 国内外共享住宿研究述评[J]. 旅游科学, 2020, 34(2):41-57.
[
|
[33] |
贾文通, 黄震方, 洪学婷, 等. 共享民宿空间集聚特征及其影响机制研究——以北京市Airbnb为例[J]. 中国生态旅游, 2021, 11(5):751-766.
[
|
[34] |
|
[35] |
吴丹丹, 冯学钢, 马仁锋, 等. 大都市区民宿和酒店业竞争格局演化及成因探测——上海案例[J]. 人文地理, 2022, 37(2):158-166.
[
|
[36] |
朱怡帆, 何丹, 程庆, 等. 都市旅游视角下上海市共享住宿空间分布特征及其影响机制[J]. 地理科学进展, 2021, 40(8):1321-1331.
[
|
[37] |
梅林, 姜洪强. 基于Airbnb数据的北京市民宿空间分异过程、因素与趋势[J]. 经济地理, 2021, 41(3):213-222.
[
|
[38] |
|
[39] |
陶伟, 古恒宇, 陈昊楠. 路网形态对城市酒店业空间布局的影响研究:广州案例[J]. 旅游学刊, 2015, 30(10):99-108.
[
|
[40] |
|
[41] |
|
[42] |
|
[43] |
陈汉云, 陈婷婷. 紧凑而富有活力的香港城市发展模式[J]. 国际城市规划, 2017, 32(3):1-5,20.
[
|
[44] |
郎嵬, 克里斯托弗·约翰·韦伯斯特. 紧凑下的活力城市:凯文·林奇的城市形态理论在香港的解读[J]. 国际城市规划, 2017, 32(3):28-33.
[
|
[45] |
周庆, 史相宾, 赵立志. 基于TOD模式的绿色城市组团设计策略研究[J]. 城市发展研究, 2013, 20(3):29-34.
[
|
[46] |
|
[47] |
李莉, 侯国林, 冯润东, 等. 共享住宿与传统住宿的时空演变对比分析——以上海市为例[J]. 地理科学进展, 2021, 40(8):1310-1320.
[
|
[48] |
赵海溶, 陆林. 上海市住宿接待业的空间格局差异及影响因素——基于传统酒店与共享住宿(Airbnb)的比较分析[J]. 经济地理, 2021, 41(11):232-240.
[
|
[49] |
刘波, 时雨, 刘雪朝, 等. 开放式街道地图在城市发展水平分析中的应用[J]. 测绘科学, 2019, 44(7):141-146,176.
[
|
[50] |
丁彦文, 许捍卫, 汪成昊. 融合OSM路网与POI数据的城市功能区识别研究[J]. 地理与地理信息科学, 2020, 36(4):57-63.
[
|
[51] |
裘亦书, 闫梦. 基于空间句法的城市路网形态对酒店布局影响研究[J]. 旅游论坛, 2018, 11(2):101-111.
[
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
傅慧. 产业集群的集聚效应:基于酒店业的分析[J]. 商业经济与管理, 2007(1):76-80.
[
|
[60] |
孟斌, 高丽萍, 李若倩. 基于协同区位商的北京城市职住要素空间关联[J]. 地理学报, 2021, 76(6):1380-1393.
[
|
/
〈 |
|
〉 |