Journal of Geo-information Science >
Fusion Method for Multi-Source Remote Sensing Daily Precipitation Data: Random Forest Model Considering Spatial Autocorrelation
Received date: 2023-12-18
Revised date: 2024-01-24
Online published: 2024-05-24
Supported by
Shandong Province Natural Science Foundation(ZR2020YQ26)
High-quality precipitation data is essential to guarantee meteorological services and hydrological applications. As an important source of precipitation data, satellite precipitation data, at various spatial and temporal scales, has been widely used in the field of hydrology and meteorology. However, satellite precipitation products often suffer from issues such as coarse spatial resolution and low accuracy, hindering their suitability for refined hydrological and meteorological applications. This study uses Random Forest (RF) as the basic model and proposes a spatial Random Forest multi-source fusion (SRF-MF) method to fuse daily precipitation data.This method first uses spatial random forest to downscale various satellite precipitation products on a monthly scale, leveraging the strong correlation between precipitation and environmental factors. Then it decomposes the monthly precipitation into daily values based on daily ratios. Finally, it uses RF to fuse downscaled data and site data to ultimately generate high-quality daily precipitation data. Using five satellite precipitation products (CHIRPS, CMORPH, PERSIANN, GAMaP and IMERG), along with rain gauge data from Sichuan Province spanning from 2015 to 2019, the SRF-MF method generated a daily precipitation dataset. This dataset was compared with the original satellite precipitation and five machine learning methods, including Random Forest Merging method (RF-MEP), single machine learning method (RF, ANN), and dual machine learning method (RF-RF, RF-ANN). Experimental results demonstrate that the precipitation dataset generated by the SRF-MF method exhibits significantly higher accuracy compared to several other methods across different time scales (daily, monthly, quarterly, yearly), with greater precision in capturing precipitation events of varying intensities. Moreover, the spatial details of the precipitation distribution map are richer and more accurate. The findings of this article provide research ideas for improving the quality of satellite precipitation data and expanding its application fields.
Key words: precipitation; multi-source data; autocorrelation; fusion; daily scale; machine learning; downscaling; refinement
HE Qingxin , CHEN Chuanfa , WANG Yuhui , SUN Yanning , LIU Yating , HU Baojian . Fusion Method for Multi-Source Remote Sensing Daily Precipitation Data: Random Forest Model Considering Spatial Autocorrelation[J]. Journal of Geo-information Science, 2024 , 26(6) : 1517 -1530 . DOI: 10.12082/dqxxkx.2024.230752
表1 卫星降水产品基本信息Tab. 1 Basic information of satellite precipitation products |
数据 | 分辨率 | 时段/年 | 来源 |
---|---|---|---|
IMERG_Final | 0.1 °/d | 2015—2019 | https://disc.gsfc.nasa.gov/datasets?keywords=IMERG&page=1 |
GSMaP_Gauge | 0.1 °/h | 2015—2019 | https://sharaku.eorc.jaxa.jp/GSMaP/index.html |
CMORPH | 0.25 °/d | 2015—2019 | https://www.ncei.noaa.gov/products/climate-data-records/precipitation-cmorph |
CHIRPS | 0.05 °/d | 2015—2019 | https://chc.ucsb.edu/data/chirps |
PERSIANN | 0.25 °/d | 2015—2019 | http://chrsdata.eng.uci.edu/ |
表2 环境驱动因子基本信息Tab. 2 Basic information of environment drivers |
数据 | 分辨率 | 时段/年 | 来源 |
---|---|---|---|
DEM | 90 m | 2015—2019 | https://www.gscloud.cn/ |
NDVI | 1 km/月 | 2015—2019 | https://ladsweb.modaps.eosdis.nasa.gov |
LST | 1 km/8d | 2015—2019 | https://ladsweb.modaps.eosdis.nasa.gov |
2 m-temperature | 10 km/h | 2015—2019 | https://cds.climate.copernicus.eu/cdsapp#!/dataset/ |
[1] |
|
[2] |
熊立华, 刘成凯, 陈石磊, 等. 遥感降水资料后处理研究综述[J]. 水科学进展, 2021, 32(4):627-637.
[
|
[3] |
|
[4] |
杜晓婉, 陈曦, 郑宏伟, 等. 一种降水降尺度模型:地形约束下的条件生成对抗网络[J]. 地球信息科学学报, 2023, 25(8):1586-1600.
[
|
[5] |
|
[6] |
|
[7] |
高歆, 袁胜元, 李京忠, 等. 面向稀疏降水站点的套合各向异性贝叶斯地统计估计研究[J]. 地球信息科学学报, 2022, 24(8):1445-1458.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
胡保健, 李伟, 陈传法, 等. 利用空间随机森林方法提升GPM卫星遥感降水质量[J]. 遥感学报, 2024, 128(2):414-425.
[
|
[17] |
|
[18] |
|
[19] |
张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7):1317-1337.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
祝新明, 宋小宁, 冷佩, 等. 多尺度地理加权回归的地表温度降尺度研究[J]. 遥感学报, 2021, 25(8):1749-1766.
[
|
[31] |
|
[32] |
|
[33] |
|
[34] |
张梅霞. 广安市近60年气候变化特征研究[D]. 成都: 四川师范大学, 2022.
[
|
/
〈 |
|
〉 |