Journal of Geo-information Science >
Typhoon Disaster Knowledge Service Driven by Large Language Models: Key Technologies and Applications
Received date: 2025-04-17
Revised date: 2025-05-16
Online published: 2025-06-05
Supported by
National Natural Science Foundation of China(42401570)
National Natural Science Foundation of China(42471463)
National Key Research and Development Program of China(2021YFB3900903)
Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(2024KFKT020)
[Objectives] This study addresses the critical challenges in typhoon disaster knowledge services, which are often hindered by "massive data, scarce knowledge, and limited services." The core objective is to rapidly distill actionable knowledge from vast datasets to enhance disaster management efficacy and mitigate typhoon-related impacts. Large Language Models (LLMs), renowned for their superior performance in natural language processing, are leveraged to deeply mine disaster-related information and provide robust support for advanced knowledge services. [Methods] This research establishes a typhoon disaster knowledge service framework encompassing three layers: data, knowledge, and service. [Results] For the data-to-knowledge layer, an LLM-driven (Qwen2.5-Max) automated method for constructing typhoon disaster Knowledge Graphs (KGs) is proposed. This method first introduces a multi-level typhoon disaster knowledge representation model that integrates spatiotemporal characteristics and disaster impact mechanisms. A specialized training dataset is curated, incorporating typhoon-related texts with explicit temporal and spatial attributes. By adopting a "pre-training + fine-tuning" paradigm, the framework efficiently transforms raw disaster data into structured knowledge. For the knowledge-to-service layer, an LLM-based intelligent question-answering system is developed. Utilizing the constructed typhoon disaster KG, this system employs Graph Retrieval-Augmented Generation (GraphRAG) to retrieve contextually relevant knowledge from the graph and generate user-specific disaster prevention and mitigation guidance. This approach ensures seamless conversion of structured knowledge into practical services, such as personalized evacuation plans and resource allocation strategies. [Conclusions] The study highlights the transformative potential of LLMs in typhoon disaster management and lays a foundation for integrating LLMs with geospatial technologies. This interdisciplinary synergy advances Geographic Artificial Intelligence (GeoAI) and paves the way for innovative applications in disaster service.
HUANG Yi , ZHANG Xueying , SHENG Yehua , XIA Yongqi , YE Peng . Typhoon Disaster Knowledge Service Driven by Large Language Models: Key Technologies and Applications[J]. Journal of Geo-information Science, 2025 , 27(6) : 1249 -1262 . DOI: 10.12082/dqxxkx.2025.250175
利益冲突:Conflicts of Interest 所有作者声明不存在利益冲突。
All authors disclose no relevant conflicts of interest.
[1] |
李泽椿, 张玲, 钱奇峰, 等. 中央气象台台风预报业务的发展及思考[J]. 大气科学学报, 2020, 43(1):10-19.
[
|
[2] |
李德仁, 眭海刚, 倪梓轩, 等. 论天空地一体化灾损监测评估[J]. 中国减灾, 2022(5):28-31.
[
|
[3] |
周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学:地球科学, 2021, 51(7):1070-1079.
[
|
[4] |
陆锋, 诸云强, 张雪英. 时空知识图谱研究进展与展望[J]. 地球信息科学学报, 2023, 25(6):1091-1105.
[
|
[5] |
张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学:信息科学, 2020, 50(9):1281-1302.
[
|
[6] |
李国杰. 智能化科研(AI4R):第五科研范式[J]. 中国科学院院刊, 2024, 39(1):1-9.
[
|
[7] |
诸云强, 孙凯, 王曙, 等. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型[J]. 中国科学:地球科学, 2023, 53(11):2609-2622.
[
|
[8] |
林珲, 游兰, 胡传博, 等. 时空大数据时代的地理知识工程展望[J]. 武汉大学学报(信息科学版), 2018, 43(12):2205-2211.
[
|
[9] |
诸云强, 孙凯, 胡修棉, 等. 大规模地球科学知识图谱构建与共享应用框架研究与实践[J]. 地球信息科学学报, 2023, 25(6):1215-1227.
[
|
[10] |
陈军, 刘万增, 武昊, 等. 基础地理知识服务的基本问题与研究方向[J]. 武汉大学学报(信息科学版), 2019, 44(1):38-47.
[
|
[11] |
张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学, 2020, 50(7):1019-1032.
[
|
[12] |
张永军, 李彦胜, 党博, 等. 多模态遥感基础大模型:研究现状与未来展望[J]. 测绘学报, 2024, 53(10):1942-1954.
[
|
[13] |
王卷乐, 韩雪华, 卜坤, 等. 防灾减灾知识服务系统及其应用研究[J]. 全球变化数据学报(中英文), 2020, 4(1):16-23.
[
|
[14] |
|
[15] |
侯志伟, 荆文龙, 秦承志, 等. 智能时代的红树林知识服务展望:从植物图谱到知识图谱[J]. 中国科学:地球科学, 2025, 55(1):111-125.
[
|
[16] |
周成虎, 孙九林, 苏奋振, 等. 地理信息科学发展与技术应用[J]. 地理学报, 2020, 75(12):2593-2609.
[
|
[17] |
|
[18] |
刘万增, 陈军, 翟曦, 等. 时空知识中心的研究进展与应用[J]. 测绘学报, 2021, 50(9):1183-1193.
[
|
[19] |
王卷乐, 张敏, 袁月蕾, 等. 知识服务驱动“一带一路”防灾减灾[J]. 科技导报, 2020, 38(16):96-104.
[
|
[20] |
龚健雅, 耿晶, 吴华意. 地理空间知识服务概论[J]. 武汉大学学报(信息科学版), 2014, 39(8):883-890.
[
|
[21] |
闵晓冬, 王卷乐, 韩保民, 等. 开放科学背景下全球灾害数据共享平台建设与应用的现状分析[J]. 中国科技资源导刊, 2023, 55(5):41-52,89.
[
|
[22] |
|
[23] |
|
[24] |
沈伟豪, 钟燕飞, 王俊珏, 等. 多模态数据的洪涝灾害知识图谱构建与应用[J]. 武汉大学学报(信息科学版), 2023, 48(12):2009-2018.
[
|
[25] |
杨绚, 张立生, 王铸. 基于机器学习算法的县域台风灾害经济损失风险评估[J]. 热带气象学报, 2022, 38(5):651-661.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
DeepSeek-AI,
|
[31] |
杨必胜, 陈一平, 邹勤. 从大模型看测绘时空信息智能处理的机遇和挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11):1756-1768.
[
|
[32] |
王益鹏, 张雪英, 党玉龙, 等. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报, 2023, 25(6):1228-1239.
[
|
[33] |
民政部国家减灾中心. 自然灾害承灾体分类与代码:GB/T 32572-2016[S]. 北京: 中国标准出版社,2016:2-4.
[ National Disaster Reduction Center, Ministry of Civil Affairs. Classification and coding for natural disaster exposure: GB/T 32572-2016[S]. Beijing: Standards Press of China, 2016: 2-4.]
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
张新长, 赵元, 齐霁, 等. 基于AI大模型的文生图技术方法研究及应用[J]. 地球信息科学学报, 2025, 27(1):10-26.
[
|
/
〈 |
|
〉 |