模态框(Modal)标题

在这里添加一些文本

模态框(Modal)标题

  • Journal
  • Article
  • Figure
  • Search
EN中文
  • Home
  • About Journal
    • Overview
    • Indexing
    • Awards
  • Editorial Board
  • Guide for Authors
  • Editorial Policies
  • Subscription
  • Contact Us
EN中文

Figure/Table detail

Improving Urban Digital Elevation Models Based on Iinterpretable Random Forest Method Considering Spatial Heterogeneity
LIU Yan, SUN Yanning, CHEN Chuanfa, LIU Panpan, LIU Yating
Journal of Geo-information Science, 2024, 26(4): 978-988.   DOI: 10.12082/dqxxkx.2024.230590

Fig. 7 Error histogram of COPDEM30 before and after correction
Other figure/table from this article
  • Fig. 1 Flowchart of the proposed method
  • Tab. 1 Texture feature description
  • Fig. 2 Study area GDEM and remote sensing image
  • Tab. 2 Data source and data type
  • Tab. 3 DBI value under different number of clusters
  • Fig. 3 Spatial partition result
  • Tab. 4 Statistical information of each subarea
  • Fig. 4 SHAP feature analysis in training area
  • Fig. 5 Relationship between the number of features in the training area and the accuracy of the model
  • Fig. 6 Precision comparison of GDEM
  • Tab. 5 Accuracy analysis after COPDEM30 correction in test area (m)
  • Tab. 6 Correlation coefficient of the characteristic variables of training and test data
  • Fig. 8 Comparison of different GDEM in the test area

Website Copyright © Journal of Geo-information Science, All Rights Reserved.
Tel: 010-64889219,010-64888891 
E-mail: dqxxkx@igsnrr.ac.cn
Powered by Beijing Magtech Co. Ltd