Figure/Table detail

MSF-UNet: A Mamba-based Spatial-Frequency Feature Fusion U-Net for Unsupervised Change Detection in SAR Images
ZHANG Yu, ZHUANG Huifu, ZHANG Xiang, TAN Zhixiang, LIU Yuhao, SHANG Jingjie, GUO Mingming
Journal of Geo-information Science, 2025, 27(9): 2213-2229.   DOI: 10.12082/dqxxkx.2025.250269

方法类型 方法 漏检像元/个 虚警像元/个 总体误差/个 F1_Score/% Kappa/%
传统 PCAKM 508 2 757 3 265 0.745 0.726
INLPG 729 1 510 2 239 0.802 0.789
IRG-McS 1 039 1 078 2 117 0.800 0.787
深度学习 DDNet 881 2 190 3 071 0.741 0.723
FCD-GAN 41 4 843 4 884 0.682 0.655
SNUNet-CD 1 736 84 1 820 0.795 0.785
TransUNet 1 185 174 1 359 0.857 0.849
CDRL-SA 1 129 477 1 606 0.838 0.828
ELGC-Net 1 046 277 1 323 0.863 0.855
本文 MSF-UNet 921 94 1 015 0.896 0.890
Tab. 2 Quantitative analysis results of different methods on the Yellow River dataset
Other figure/table from this article