地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (4): 593-603.doi: 10.12082/dqxxkx.2021.200183
谭佩珊1,2,3,4(), 麦可1,2,3,4, 张亚涛2,3,4, 涂伟1,2,3,4,*(
)
收稿日期:
2020-04-16
修回日期:
2020-09-09
出版日期:
2021-04-25
发布日期:
2021-06-25
通讯作者:
涂伟
作者简介:
谭佩珊(1996— ),女,广东中山人,硕士生,主要从地铁交通研究。E-mail: 970733211@qq.com
基金资助:
TAN Peishan1,2,3,4(), MAI Ke1,2,3,4, ZHANG Yatao2,3,4, TU Wei1,2,3,4,*(
)
Received:
2020-04-16
Revised:
2020-09-09
Online:
2021-04-25
Published:
2021-06-25
Contact:
TU Wei
Supported by:
摘要:
随着时代的发展,世界城市规模不断扩大,各大城市的交通需求陡然增加,而地面出行所带来的堵塞和环保问题导致政府部门把目光转向地下交通发展,其中地铁是地下交通发展中最重要的交通工具。准确划定地铁站点吸引范围,分析影响地铁站点吸引范围主要因素,不仅对于优化地铁交通服务和规划地铁周边建成环境具有重要意义,同时对于新建地铁站点设施规划具有参考价值。传统的地铁吸引范围划定方法大多依赖于居民日常出行活动的调查和经验意见,存在时间周期长且耗费巨大和吸引范围划定不准确的问题;而多源城市数据的涌现为量化地铁站点周边建成环境及客流空间分布、合理划定地铁站点提供了全新的解决方案。TOD(Transit Oriented Development,TOD)是高密度城市(如深圳、北京等)寻求的城市和交通和谐发展的重要选择,也是未来交通建设的主要参考理念。因此,从公共交通导向的开发视角出发,本文利用2017年的兴趣点、道路网络、公共交通线路等多源城市数据刻画地铁站点周围的TOD信息指标,利用K均值聚类进行地铁站点聚类,结合TOD指标的空间变化趋势,确定深圳市不同类型地铁站点的吸引范围。研究结果表明:① 基于TOD密度指标划定的地铁站点吸引范围能够揭示地铁站点的吸引范围的差异,且就业地点密度和土地混合利用度对地铁站点吸引范围的影响较大; ② 与城市非中心区域相比,城市中心区域的地铁站点吸引半径较小但出行需求较高,其凸显了地铁站点规划在空间服务密度和居民出行需求之间的取得均衡;③ 深圳市地铁站点吸引范围重叠与城市区域发展程度相关程度较高,可为利用现有地铁站点空间覆盖,发展城市功能集中区域提供参考。
谭佩珊, 麦可, 张亚涛, 涂伟. 利用多源城市数据划定地铁站点吸引范围[J]. 地球信息科学学报, 2021, 23(4): 593-603.DOI:10.12082/dqxxkx.2021.200183
TAN Peishan, MAI Ke, ZHANG Yatao, TU Wei. Identifying the Catchment Area of Metro Stations Using Multi-Source Urban Data[J]. Journal of Geo-information Science, 2021, 23(4): 593-603.DOI:10.12082/dqxxkx.2021.200183
表2
2017年深圳地铁站点的吸引半径和方差"
类别 | DI阈值 | ||||
---|---|---|---|---|---|
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | |
第1类 | 1987 | 1227 | 902 | 902 | 662 |
第2类 | 1761 | 1349 | 920 | 920 | 711 |
第3类 | 1119 | 744 | 539 | 539 | 453 |
第4类 | 1722 | 1142 | 929 | 929 | 716 |
第5类 | 1451 | 1036 | 929 | 759 | 518 |
第6类 | 1203 | 856 | 759 | 593 | 525 |
第7类 | 1191 | 753 | 593 | 560 | 474 |
第8类 | 1117 | 712 | 712 | 531 | 439 |
第9类 | 1352 | 880 | 880 | 649 | 540 |
第10类 | 1603 | 1011 | 1011 | 768 | 643 |
第11类 | 1568 | 983 | 983 | 774 | 374 |
第12类 | 2028 | 859 | 859 | 782 | 368 |
第13类 | 1735 | 996 | 996 | 737 | 625 |
第14类 | 1942 | 1144 | 1144 | 701 | 569 |
第15类 | 2152 | 1374 | 1374 | 1059 | 782 |
15类吸引半径方差 | 335.4 | 203.3 | 199.4 | 152.2 | 122.8 |
全市域地铁站点 | 1595 | 1004 | 902 | 747 | 560 |
[1] | Zhang J, Wang M. Transportation functionality vulnerability of urban rail transit networks based on moving block: the case of Nanjing metro[J]. Physical A: Statistical Mechanics and Its Applications, 2019,535:122367. |
[2] | Chorus P, Bertolini L. An application of the node place model to explore the spatial development dynamics of station areas in Tokyo[J]. Journal of Transport and Land Use, 2011,4(1):45-58. |
[3] | Li L, Ren H, Zhao S, et al. Two dimensional accessibility analysis of metro stations in Xi'an, China[J]. Transportation Research Part A: Policy and Practice, 2017,106:414-426. |
[4] | Ma X, Zhang J, Ding C, et al. A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership[J]. Computers, Environment and Urban Systems, 2018,70:113-124. |
[5] | Zhang Y, Marshall S, Manley E. Network criticality and the node-place-design model: Classifying metro station areas in Greater London[J]. Journal of Transport Geography, 2019,79:102485. |
[6] | 王淑伟, 孙立山, 荣建. 北京市轨道站点吸引范围研究[J]. 交通运输系统工程与信息, 2013,13(3):183-188. |
[ Wang S W, Sun L S, Rong J. Beijing rail site attraction range research[J]. Journal of Transportation Systems Engineering and Information Technology, 2013,13(3):183-188. ] | |
[7] | Chakraborty J, Armstrong M P. Exploring the use of buffer analysis for the identification of impacted areas in environmental equity assessment[J]. Cartography and Geographic Information Systems, 1997,24(3):145-157. |
[8] | Aoife A A, Tapley N. The use of stated preference techniques to model modal choices on interurban trips in Ireland[J]. Transportation Research Part A, 2008,42(1):15-27. |
[9] | 陆化普, 朱军. 城市轨道交通规划的研究与实践[M]. 北京: 中国水利出版社, 2001. |
[ Lu H P, Zhu J. Study and practice on urban rail transit planning[M]. Beijing: China Water Power Press, 2001. ] | |
[10] | Neill W A, Ramsey R D, Chou J C . Analysis of transit service areas using geographic information systems[J]. Transportation Research Record, 1997,1604:50-59. |
[11] | Weinstein Agrawal A, Schlossberg M, Irvin K. How far, by which route and why? A spatial analysis of pedestrian preference[J]. Journal of Urban Design, 2008,13(1):81-98. |
[12] | Cervero R. Transit-oriented development in the United States: Experiences, challenges and prospective[R]. 2004. |
[13] | 周慧, 靳凤娟. TOD在开放性大学校园规划中的应用——以湖南大学为例[J]. 中外建筑, 2011(1):85-86. |
[ Zhou H, Jin F J. The application of TOD on the planning of open university: A case study of Hunan University[J]. Chinese and Overseas Architecture, 2011,1:85-86. ] | |
[14] | Bertolini L, Spit T. Cities on Rails: The redevelopment of railway station areas[M]. London: Spon Press, 1998. |
[15] | Dittmar H, Ohland G. The new transit town: Best practices in transit-oriented development[M]. Island Press, 2004. |
[16] | Cervero R, Kockelman K. Travel demand and the 3Ds: Density, diversity, and design[J]. Transportation Research, Part D: Transport and Environment, 1997,2(3):199-219. |
[17] | Lyu G, Bertolini L, Pfeffer K. Developing a TOD typology for Beijing metro station areas[J]. Journal of Transport Geography, 2016,55:40-50. |
[18] | Alharami A, Furlan R. Qatar national MUSEUM-Transit oriented development: The masterplan for the urban regeneration of a 'green TOD'[J]. Journal of Urban Management, 2020,9(1):115-136. |
[19] | 龙瀛, 周垠. 街道活力的量化评价及影响因素分析——以成都为例[J]. 新建筑, 2016(1):52-57. |
[ Long Y, Zhou Y. Quantitative Evaluation on street vibrancy and its impact factors: A case study of Chengdu[J]. New Architecture, 2016,1:52-57. ] | |
[20] | 李清泉. 从Geomatics到Urban Informatics[J]. 武汉大学学报·信息科学版, 2017,42(1):1-6. |
[ Li Q Q. From geomatics to urban informatics[J]. Geomatics and Information Science of Wuhan University, 2017,42(1):1-6. ] | |
[21] | Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015,105(3):512-530. |
[22] | Tu W, Cao J Z, Yue Y, et al. Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns[J]. International Journal of Geographical Information Science, 2017,31(12):2331-2358. |
[23] | Cao R, Tu W, Cao J, et al. Comparison of urban human movements inferring from multi-source spatial-temporal data[J]. ISPRS International Archives of the Photogrammetry Remote Sensing & Spatial Information Sciences, 2016, XLI-B2:471-476. |
[24] | 曹瑞, 涂伟, 巢佰崇, 等. 基于智能卡数据的地铁周边职住用地识别与分析[J]. 测绘地理信息, 2016,41(3):74-78. |
[ Cao R, Tu W, Chao B C, et al. Identification and analysis of home and work regions in the vicinity of metro stations using smart card data[J]. Journal of Geomatics, 2016,41(3):74-78. ] | |
[25] | Gu P, He D, Chen Y, et al. Transit-oriented development and air quality in Chinese cities: A city-level examination[J]. Transportation Research Part D: Transport and Environment, 2019,68:10-25. |
[26] | 张晓春, 田锋, 吕国林, 邵源. 深圳市TOD框架体系及规划策略[J]. 城市交通, 2011,9(3):37-44. |
[ Zhang X C, Tian F, Lu G L, Yu Y. Shenzhen TOD framework system and planning strategy[J]. Urban Transportation, 2011,9(3):37-44. ] | |
[27] | 唐炉亮, 牛乐, 杨雪, 等. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017,46(6):770-779. |
[ Tang L L, Niu L, Yang X, et al. Using track big data for urban road intersection identification and structural extraction[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(6):770-779.] | |
[28] | 孔令彦, 关丽, 丁燕杰, 等. 空间大数据支持下的城市区域评估及其关键技术[J]. 测绘通报, 2017(8):100-105. |
[ Kong L Y, Guan L, Ding Y J, et al. Urban regional assessment and key technologies supported by space Big Data[J]. Bulletin of Surveying and Mapping, 2017(8):100-105. ] | |
[29] | 单杰, 秦昆, 黄长青, 等. 众源地理数据处理与分析方法探讨[J]. 武汉大学学报·信息科学版, 2014,39(4):390-396. |
[ Shan J, Qin K, Huang C Q, et al. Methods of crowd sourcing Geographic data processing and analysis[J]. Geomatics and Information Science of Wuhan University, 2014,39(4):390-396. ] | |
[30] | 李清泉, 李德仁. 大数据GIS[J]. 武汉大学学报·信息科学版, 2014,39(6):641-644. |
[ Li Q Q, Li D R. Big data GIS[J]. Geomatics and Information Science of Wuhan University, 2014,39(6):641-644. ] | |
[31] | Fang Z, Tu W, Li Q, et al. A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities[J]. Journal of Transport Geography, 2011,19(4):623-634. |
[32] | Zhou J, Yang Y, GU P, et al. Can TODness improve (expected) performances of TODs? An exploration facilitated by non-traditional data[J]. Transportation Research Part D: Transport and Environment, 2019,74:28-47. |
[33] | Calthorpe P. The next American metropolis: Ecology, community and the American dream[R]. Princeton Architectural Press, New York, 2002. |
[34] | Sang G L, Tong D, Hickman M. Generating route-level mutually exclusive service areas: comparative study of alternative methods[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013,2350(1):37-46. |
[1] | 谢聪慧, 吴世新, 张晨, 孙文涛, 何海芳, 裴韬, 罗格平. 基于谱系聚类的全球各国新冠疫情时间序列特征分析[J]. 地球信息科学学报, 2021, 23(2): 236-245. |
[2] | 韩珂珂, 邢子瑶, 刘哲, 刘峻明, 张晓东. 重大公共卫生事件中的舆情分析方法研究——以新冠肺炎疫情为例[J]. 地球信息科学学报, 2021, 23(2): 331-340. |
[3] | 张琛, 马祥元, 周扬, 郭仁忠. 基于用户情感变化的新冠疫情舆情演变分析[J]. 地球信息科学学报, 2021, 23(2): 341-350. |
[4] | 高楹, 宋辞, 郭思慧, 裴韬. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. |
[5] | 陈文静, 李锐, 董广胜, 李江. 网络地理信息服务中用户空间访问聚集行为研究[J]. 地球信息科学学报, 2021, 23(1): 93-103. |
[6] | 张政, 华一新, 张亚军, 曾梦熊, 杨振凯. 以节点为中心的关系边聚类与可视化算法[J]. 地球信息科学学报, 2020, 22(9): 1779-1788. |
[7] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[8] | 项秋亮, 邬群勇, 张良盼. 一种逐级合并OD流向时空联合聚类算法[J]. 地球信息科学学报, 2020, 22(6): 1394-1405. |
[9] | 周琦, 高长春. 城市创意产业空间动态集聚演化的计算与可视优化方法[J]. 地球信息科学学报, 2020, 22(5): 1033-1048. |
[10] | 赵斌, 韩晶晶, 史覃覃, 吉根林, 刘信陶, 俞肇元. 语义轨迹建模与挖掘研究进展[J]. 地球信息科学学报, 2020, 22(4): 842-856. |
[11] | 高海峰, 葛莹, 张杰, 肖胜昌, 陈科. 面向复杂地形的坡位K-means聚类划分研究[J]. 地球信息科学学报, 2020, 22(3): 474-481. |
[12] | 何惠馨, 范俊甫, 陈文贺, 周玉科, 张鹏, 俞宵. 基于亮度补偿的遥感影像阴影遮挡道路提取方法[J]. 地球信息科学学报, 2020, 22(2): 258-267. |
[13] | 孙小芳. 夜光遥感支持下的城市人口核密度空间化及自相关分析[J]. 地球信息科学学报, 2020, 22(11): 2256-2266. |
[14] | 裴韬, 舒华, 郭思慧, 宋辞, 陈洁, 刘亚溪, 王席. 地理流的空间模式:概念与分类[J]. 地球信息科学学报, 2020, 22(1): 30-40. |
[15] | 邓敏, 蔡建南, 杨文涛, 唐建波, 杨学习, 刘启亮, 石岩. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56. |
|