地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (4): 670-679.doi: 10.12082/dqxxkx.2021.200213

• 遥感科学与应用技术 • 上一篇    下一篇

多尺度相关性分析的机载双极化InSAR轨道误差校正方法

何永红(), 靳鹏伟*(), 蒋陈纯   

  1. 湖南科技学院 土木与环境工程学院,永州 425199
  • 收稿日期:2020-04-29 修回日期:2020-08-02 出版日期:2021-04-25 发布日期:2021-06-25
  • 通讯作者: 靳鹏伟
  • 作者简介:何永红(1978— ),女,河北定州人,博士,副教授,主要从事InSAR数据处理及应用研究。E-mail: 365022968@qq.com
  • 基金资助:
    国家自然科学基金项目(41531068);国家自然科学基金项目(41671356);湖南省自然科学资金项目(2020JJ4031)

An Airborne Dual PolInSAR Orbit Error Removal Method based on Multi-Scale Correlation Analysis

HE Yonghong(), JIN Pengwei*(), JIANG Chenchun   

  1. School of Civil and Environmental Engineering, Hunan University of Science and Engineering, Yongzhou 425199, China
  • Received:2020-04-29 Revised:2020-08-02 Online:2021-04-25 Published:2021-06-25
  • Contact: JIN Pengwei
  • Supported by:
    National Natural Science Foundation of China(41531068);National Natural Science Foundation of China(41671356);Natural Science Foundation of Hunan Province(2020JJ4031)

摘要:

在高分辨率机载干涉SAR成像处理过程中,由于载机飞行过程中偏离理想轨迹,需要高精度的惯导系统和GPS系统记录载机的运动轨迹并进行运动补偿。然而,由于目前传感器导航精度的限制,在完成运动补偿处理后仍然存在轨道误差,从而影响干涉相位的精度,本文提出了一种机载双极化InSAR轨道误差去除方法。该方法利用小波多尺度分析对不同极化方式差分干涉相位进行多尺度分解,减弱地形误差相位、噪声相位对轨道误差的干扰,然后根据不同极化方式轨道误差的高度相关性,对相位进行降权改正,得到轨道误差改正后的差分干涉相位。为验证该方法的可靠性,分别采用模拟数据和E-SAR P波段双极化数据进行实验分析,结果表明原始差分干涉图中的轨道误差剔除明显,利用P波段获得的校正干涉图生成数字高程模型(DEM),轨道误差改正前后获取的DEM与LiDAR值的均方根误差(RMSE)分别为6.02 m和1.68 m,提高了InSAR测高精度。本研究为机载InSAR轨道误差补偿提供了一种新的思路。

关键词: PolInSAR, 运动补偿, 重复轨道, 轨道误差, 机载InSAR, 多尺度分析, 数字高程模型, 残余运动误差

Abstract:

In the process of high-resolution airborne interference SAR imaging, due to the deviation from the ideal trajectory during the flight of the aircraft, it is necessary to compensate the motion trajectory of the inertial navigation system and the GPS system. However, due to limited accuracy of current sensor navigation, orbit error still exists after motion compensation, which affects the accuracy of the interference phase. In this paper, a method of removing orbit error for airborne polarimetric interferometric SAR is proposed. This method uses wavelet multi-scale analysis to decompose the phase of differential interference in different polarization modes and reduce the interference of terrain error phase and noise phase to orbit error. According to the correlation of orbit error between different polarizations, the phase is corrected by weight reduction. Finally, we get Phase unwrapping of differential interference after orbit error correction. In order to verify the reliability of the method, simulated data and E-SAR P-band multi-polarization data are used for experimental analysis. The results show that the orbit errors are eliminated obviously. In addition, the correction interferograms obtained in P-band are also used to generate Digital Elevation Model (DEM). The Root Mean Square Error (RMSE) of DEM and LiDAR obtained before and after correction are 6.02 m and 1.68 m, respectively, which improves the accuracy of InSAR measurement. This study provides a new thought for airborne InSAR orbit error compensation.

Key words: Polarimetric SAR Interferometry (PoLInSAR), motion compensation, repeat pass, orbit error, Airborne InSAR, multiscale analysis, Digital Elevation Model (DEM), Residual Motion Error (RME)