地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (4): 670-679.doi: 10.12082/dqxxkx.2021.200213
收稿日期:
2020-04-29
修回日期:
2020-08-02
出版日期:
2021-04-25
发布日期:
2021-06-25
通讯作者:
*靳鹏伟(1981— ),男,山西长治人,硕士,讲师,主要从事测绘与岩土工程等方面的教学与研究。 E-mail: 65450015@qq.com作者简介:
何永红(1978— ),女,河北定州人,博士,副教授,主要从事InSAR数据处理及应用研究。E-mail: 365022968@qq.com
基金资助:
HE Yonghong(), JIN Pengwei*(
), JIANG Chenchun
Received:
2020-04-29
Revised:
2020-08-02
Online:
2021-04-25
Published:
2021-06-25
Contact:
JIN Pengwei
Supported by:
摘要:
在高分辨率机载干涉SAR成像处理过程中,由于载机飞行过程中偏离理想轨迹,需要高精度的惯导系统和GPS系统记录载机的运动轨迹并进行运动补偿。然而,由于目前传感器导航精度的限制,在完成运动补偿处理后仍然存在轨道误差,从而影响干涉相位的精度,本文提出了一种机载双极化InSAR轨道误差去除方法。该方法利用小波多尺度分析对不同极化方式差分干涉相位进行多尺度分解,减弱地形误差相位、噪声相位对轨道误差的干扰,然后根据不同极化方式轨道误差的高度相关性,对相位进行降权改正,得到轨道误差改正后的差分干涉相位。为验证该方法的可靠性,分别采用模拟数据和E-SAR P波段双极化数据进行实验分析,结果表明原始差分干涉图中的轨道误差剔除明显,利用P波段获得的校正干涉图生成数字高程模型(DEM),轨道误差改正前后获取的DEM与LiDAR值的均方根误差(RMSE)分别为6.02 m和1.68 m,提高了InSAR测高精度。本研究为机载InSAR轨道误差补偿提供了一种新的思路。
何永红, 靳鹏伟, 蒋陈纯. 多尺度相关性分析的机载双极化InSAR轨道误差校正方法[J]. 地球信息科学学报, 2021, 23(4): 670-679.DOI:10.12082/dqxxkx.2021.200213
HE Yonghong, JIN Pengwei, JIANG Chenchun. An Airborne Dual PolInSAR Orbit Error Removal Method based on Multi-Scale Correlation Analysis[J]. Journal of Geo-information Science, 2021, 23(4): 670-679.DOI:10.12082/dqxxkx.2021.200213
[1] | Zhang H, Hong J, Qiu X L, et al. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR[J]. Frontiers of Information Technology & Electronic Engineering, 2016,17(10):1095-1106. |
[2] | Demacedo K A C, Scheiber R. Precise topography and aperture-Dependent motion compensation for airborne SAR[J]. IEEE Geoscience & Remote Sensing Letters, 2005,2(2):172-176. |
[3] | Hensley s, Michel T, Simard M, et al. Residual motion estimation for UAVSAR: implications of an electronically scanned array[C]. IEEE Radar Conference, Pasadena, California, USA, May 2009. |
[4] | Moreira A, Huang Y. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience & Remote Sensing, 1994,32(5):1029-1040. |
[5] | Reigber A, Scheiber R, Jager M, et al. Very-High-Resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013,101(3):759-783. |
[6] | Reigber A. Correction of residual motion errors in airborne SAR interferometry[J]. Electronics Letters, 2001,37(17):1083-1084. |
[7] | Prats P, Mallorqui J J. Estimation of azimuth phase undulations with multisquint processing in airborne interferometric SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(6):1530-1533. |
[8] | Demacedo K A C, Scheiber R. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR Interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008,46(10):3151-3162. |
[9] | Zhong X, Xiang M, Yue H, et al. Algorithm on the estimation of residual motion errors in Airborne SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014,52(2):1311-1323. |
[10] | Zhong X L, Guo H D, Xiang M S, et al. Residual motion estimation with point targets and its application to airborne repeat-pass SAR interferometry[J]. International Journal of Remote Sensing, 2012,33(3):762-780. |
[11] | Tebaldini S, Rocca F. Phase calibration of airborne tomographic SAR data via phase center double localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(3):1775-1792. |
[12] | Pardini M, Papathanassiou K, Bianco V, et al. Phase calibration of multibaseline SAR data based on a minimum entropy criterion[C]. IEEE Geoscience and Remote Sensing Symposium, 2012. |
[13] | Fu H Q, Zhu J J, Wang C C, et al. A wavelet decomposition and polynomial fitting-based method for the estimation of time-Varying residual motion error in airborne interferometric SAR[J]. IEEE Transactions on Geoence & Remote Sensing, 2018,56(1):49-59. |
[14] | Fu H Q, Zhu J J, Wang C C, et al. Underlying topography estimation over forest areas using high-resolution P-band single-baseline PolInSAR data[J]. Remote Sensing, 2017,9(4):363-375. |
[15] | Zhang L, Wang G, Qiao Z, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(1):184-193. |
[16] | Wang G Y, Zhang Li, Li J, et al. Precise aperture-dependent motion compensation for high-resolution synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2017,11(1):204-211. |
[17] | Zeng L T, Liang Y, Xing M D, et al. Two-dimensional autofocus technique for high-resolution spotlight synthetic aperture radar[J]. IET Signal Processing, 2016,10(6):699-707. |
[18] | Scheiber R, Moreira A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2179-2191. |
[19] | Reigber A, Papathanassiou K. Correction of residual motion errors in airborne repeat-pass interferometry[C]. International Geoscience and Remote Sensing Symposium,Sydney, Australia, July 2001(7):3077-3079. |
[20] | Reigber A, Prats P, Mallorqui J J. Refined estimation of time-varying baseline errors in Airborne SAR interferometry[J]. IEEE Geoscience & Remote Sensing Letters, 2006,3(1):145-149. |
[21] | Wang H Q, Zhu J J, Fu H Q, et al. Modeling and Robust Estimation for the Residual Motion Error in Airborne SAR Interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(1):1-5. |
[22] | 何永红, 靳鹏伟, 舒敏. 基于多尺度相关性分析的InSAR对流层延迟误差改正算法[J]. 地球信息科学学报, 2020,22(09):1878-1886. |
[ He Y H, Jin P W, Shu Min. InSAR tropospheric delay error correction algorithm based on multi-scale correlation analysis[J]. Journal of Geo-information Science, 2020,22(9):1878-1886. ] | |
[23] | Reigber A, Prats P, Mallorqui J J. Refined estimation of time-varying baseline errors in airborne SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(1):145-149. |
[24] | Shirzaei M, Walter T R . Estimating the effect of satellite orbital error using wavelet-based robust regression applied to InSAR deformation data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(11):4600-4605. |
[25] | Shirzaei M, Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms[J]. Geophysical Research Letters, 2012,39(1):1-6. |
[26] | 文鸿雁. 基于小波理论的变形分析模型研究[D]. 武汉:武汉大学, 2004. |
[ Wen Hongyan. Research on deformation analysis mode based on wavelet transform theory[D]. Wuhan: Wuhan University, 2004. ] | |
[27] | 陶珂, 朱建军. 多指标融合的小波去噪最佳分解尺度选择方法[J]. 测绘学报, 2012,41(5):121-127. |
[ Tao Ke, Zhu Jianjun. A Hybrid Indicator for Determining the Best Decomposition Scale of Wavelet Denoising[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(5):121-127. ] | |
[28] | Goswami J C, Chan A K. Fundamentals of wavelets: Theory, algorithms, and applications[M]. Hoboken, NJ: Wiley-Interscience, 1999. |
[1] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[2] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[3] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[4] | 贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. |
[5] | 赵洋, 徐枫, 万义良. 基于改进引力模型的公园绿地空间可达性及供需平衡分析方法[J]. 地球信息科学学报, 2022, 24(10): 1993-2003. |
[6] | 贺卓文, 陈楠. 复杂网络理论在黄土高原沟谷地貌特征研究中的应用[J]. 地球信息科学学报, 2021, 23(7): 1196-1207. |
[7] | 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. |
[8] | 储国中, 李蒙蒙, 汪小钦. 融合高度特征的高分遥感影像多尺度城市建筑类型分类[J]. 地球信息科学学报, 2021, 23(11): 2073-2085. |
[9] | 何永红, 靳鹏伟, 舒敏. 基于多尺度相关性分析的InSAR对流层延迟误差改正算法[J]. 地球信息科学学报, 2020, 22(9): 1878-1886. |
[10] | 陶宇, 王春, 徐燕, 张光祖, 宋素素, 杨维. DEM建模视角下的城市道路分类与表达[J]. 地球信息科学学报, 2020, 22(8): 1589-1596. |
[11] | 熊礼阳, 汤国安. 黄土高原沟谷地貌发育演化研究进展与展望[J]. 地球信息科学学报, 2020, 22(4): 816-826. |
[12] | 李思进, 代文, 熊礼阳, 汤国安. DEM分辨率对黄土侵蚀沟形态特征表达的不确定性分析[J]. 地球信息科学学报, 2020, 22(3): 338-350. |
[13] | 顾文亚, 孟祥瑞, 朱晓晨, 邱新法. 基于BEMD分解的地貌分类研究[J]. 地球信息科学学报, 2020, 22(3): 464-473. |
[14] | 吴钱娇, 陈玉敏. 基于CUDA的地表水动态模拟并行方法[J]. 地球信息科学学报, 2020, 22(3): 505-515. |
[15] | 杨双姝玛, 黄庆旭, 何春阳, 刘紫玟. 中国建设用地空间格局分析[J]. 地球信息科学学报, 2019, 21(2): 178-189. |
|