地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (4): 710-722.doi: 10.12082/dqxxkx.2021.200312
乔丹玉1,2(), 郑进辉3, 鲁晗1,2,*(
), 邓磊1,2,3
收稿日期:
2020-06-16
修回日期:
2020-10-01
出版日期:
2021-04-25
发布日期:
2021-06-25
通讯作者:
鲁晗
作者简介:
乔丹玉(1995— ),女,山东威海人,硕士生,研究方向为遥感图像处理与应用。E-mail: qiaodanyu_js@163.com
基金资助:
QIAO Danyu1,2(), ZHENG Jinhui3, LU Han1,2,*(
), DENG Lei1,2,3
Received:
2020-06-16
Revised:
2020-10-01
Online:
2021-04-25
Published:
2021-06-25
Contact:
LU Han
Supported by:
摘要:
快速、准确地从卫星影像中提取水体信息一直是遥感应用的热点问题,在水资源管理、水环境监测和灾害应急管理等领域极具应用价值。虽然目前已有多种针对Landsat系列影像的水体提取方法,但由于地理位置、地形和水体形态等环境背景因素的影响,导致同种方法在不同的环境背景中呈现出不同的提取效果。本文针对人为影响严重、影像明暗对比强烈的城区(北京怀柔县城周边)以及地形起伏明显、水体细小的非城区(北京密云水库周边) 2种典型背景环境,选择波段设置略有差异的Landsat 5(2009年)和Landsat 8(2019年)卫星影像,对比了常用的指数法(NDWI和MNDWI)和分类法(最大似然法和支持向量机)在水体信息提取方面的优势和不足。结果表明:在城区背景中,SVM的准确性最高(总体精度>97%);在非城区背景中,MNDWI与SVM的精度相当(总体精度>95%),前者更适用于水体的快速提取,而后者提取的山间细碎河流更完整,且在Landsat 8中应用的效果更好。该研究为不同环境背景下水体提取方法的选择提供了参考。
乔丹玉, 郑进辉, 鲁晗, 邓磊. 面向不同环境背景的Landsat影像水体提取方法适用性研究[J]. 地球信息科学学报, 2021, 23(4): 710-722.DOI:10.12082/dqxxkx.2021.200312
QIAO Danyu, ZHENG Jinhui, LU Han, DENG Lei. Application of Water Extraction Methods from Landsat Imagery for Different Environmental Background[J]. Journal of Geo-information Science, 2021, 23(4): 710-722.DOI:10.12082/dqxxkx.2021.200312
表1
Landsat 5、Landsat 8传感器主要参数(多光谱)"
Landsat 5 TM | Lansat8 OLI | 地面分辨率/m | ||
---|---|---|---|---|
波段 | 波长范围/μm | 波段 | 波长范围/μm | |
B1-Blue | 0.45~0.52 | B1-Costal aerosol | 0.43~0.45 | 30 |
B2-Green | 0.52~0.60 | B2-Blue | 0.45~0.51 | 30 |
B3-Red | 0.63~0.69 | B3-Green | 0.53~0.59 | 30 |
B4-NIR | 0.76~0.90 | B4-Red | 0.64~0.67 | 30 |
B5-SWIR | 1.55~1.75 | B5-NIR | 0.85~0.88 | 30 |
B6-LWIR | 10.40~12.5 | B6-SWIR1 | 1.57~1.65 | 120/30 |
B7-SWIR | 2.08~2.35 | B7-SWIR2 | 2.11~2.29 | 30 |
[1] | Papa F, Prigent C, Rossow W B. Monitoring flood and discharge variations in the Large Siberian Rivers from a multi-satellite technique[J]. Surveys in Geophysics, 2008,29(4-5):297-317. |
[2] | Chen Q, Zhang Y, Ekroos A, et al. The role of remote sensing technology in the EU water framework directive (WFD)[J]. Environmental Science & Policy, 2004,7(4):267-276. |
[3] | 刘桂林, 张落成, 刘剑, 等. 基于Landsat TM影像的水体信息提取[J]. 中国科学院大学学报, 2013,30(5):644-650. |
[ Liu G L, Zhang L C, Liu J, et al. Water body information extraction based on Landsat TM remote sensing imagery[J]. Journal of University of Chinese Academy of Sciences, 2013,30(5):644-650. ] | |
[4] | Jawak S D, Luis A J. A rapid extraction of water body features from Antarctic Coastal Oasis using very high-resolution satellite remote sensing data[J]. Aquatic Procedia, 2015(4):125-132. |
[5] | McFEETERS S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432. |
[6] | 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595. |
[ Xu H Q. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595. ] | |
[7] | 段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015,27(4):79-84. |
[ Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resource, 2015,27(4):79-84. ] | |
[8] | 龚文峰, 王鹏, 王双宇, 等. 基于GF-2卫星遥感影像的界河水体信息提取方法[J]. 黑龙江大学工程学报, 2018,9(4):1-7. |
[ Gong W F, Wang P, Wang S Y, et al. Methods of water body extraction in boundary river based on GF-2 satellite remote sensing image of high resolution[J]. Journal of Engineering of Heilongjiang University, 2018,9(4):1-7. ] | |
[9] | 曹萌萌, 毛克彪, 严毅博, 等. 基于MODIS数据的洞庭湖水体和水华时空变化研究[J]. 中国环境科学, 2019,39(6):2523-2531. |
[ Cao M M, Mao K B, Yan Y B, et al. Change of temporal and spatial characteristic of water body and algal bloom area in Dongting Lake based on MODIS data[J]. China Environmental Science, 2019,39(6):2523-2531. ] | |
[10] | 王航, 秦奋. 遥感影像水体提取研究综述[J]. 测绘科学, 2018,43(5):23-32. |
[ Wang H, Qin F. Summary of the research on water body extraction and application from remote sensing image[J]. Science of Surveying and Mapping, 2018,43(5):23-32. ] | |
[11] | Feyisa G L, Meilby H, Fensholt R, et al. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140:23-35. |
[12] | Sarp G, Ozcelik M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey[J]. Journal of Taibah University for Science, 2018,11(3):381-391. |
[13] | 段号然. 山东微山湖湖面面积时空变化及影响因素[D]. 太原:山西农业大学, 2019. |
[ Duan H R. The spatial and temporal Dynamic changes and driving forces in the surface area of Weishan Lake of Shandong province[J]. Taiyuan: Shanxi Agricultural University, 2019. ] | |
[14] | 王瑾杰, 丁建丽, 张成, 等. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017,29(1):29-35. |
[ Wang J J, Ding J L, Zhang C, et al. Method of water information extraction by improved SWI based on GF-1 satellite image[J]. Remote Sensing for Land and Resources, 2017,29(1):29-35. ] | |
[15] | 郑逢斌, 李坡涛, 韩林果. 基于高分二号影像的城区水体提取方法研究[J]. 河南大学学报(自然科学版), 2020,50(2):213-220. |
[ Zheng F B, Li P T, Han L G. Study on urban water extraction based on GF-2 image[J]. Journal of Henan University (Natural Science), 2020,50(2):213-220. ] | |
[16] | 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019,35(4):43-49. |
[ Chen Q, Zheng L J, Li X J, et al. Water body extraction from high-resolution satellite remote sensing images based on deep learning[J]. Geography and Geo-information Science, 2019,35(4):43-49. ] | |
[17] | Chen Y, Tang L, Kan Z, et al. A novel Water Body Extraction Neural Network (WBE-NN) for optical high-resolution multispectral imagery[J]. Journal of Hydrology, 2020,588:125092. |
[18] | 洪亮, 黄雅君, 杨昆, 等. 复杂环境下高分二号遥感影像的城市地表水体提取[J]. 遥感学报, 2019,23(5):871-882. |
[ Hong L, Huang Y J, Yang K, et al. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J]. Journal of Remote Sensing, 2019,23(5):871-882. ] | |
[19] | 聂欣然, 刘荣, 余健, 等. 基于不同地形的TM影像水体提取方法比较和分析[J]. 江西科学, 2017,35(3):360-366. |
[ Nie X R, Liu R, Yu J, et al. Comparison and analysis of water extraction methods of TM images based on different terrain[J]. Jiangxi Science, 2017,35(3):360-366. ] | |
[20] | 毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析[J]. 遥感信息, 2012,27(5):77-82. |
[ Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2010,27(5):77-82. ] | |
[21] | Jiang W, He G, Long T, et al. Multilayer perceptron neural network for surface water extraction in Landsat 8 OLI satellite images[J]. Remote Sensing, 2018,10(5):755. |
[22] | Acharya T D, Subedi A, Lee D H. Evaluation of machine learning algorithms for surface water extraction in a Landsat 8 scene of Nepal[J]. Sensors, 2019,19(12):2769. |
[23] | 许静, 陈兴伟, 陈文惠. 基于波谱特征的水体信息提取方法研究[C]. 福建省第十二届水利水电青年学术交流会, 中国福建福州, 2008:20-27. |
[ Xu J, Chen X W, Chen W H. Research on water body information extraction method based on spectrum features[C]. The 12th Water Conservancy and Hydropower Youth Academic Exchange Conference in Fujian Province, Fuzhou, Fujian, China, 2008: 20-27. ] | |
[24] | 陈正超, 张兵, 张浩, 等. 北京一号小卫星绝对辐射定标[C]// 第八届光谱技术与应用研讨会暨交叉学科论坛, 2010: 8-13. |
[ Chen Z C, Zhang B, Zhang H, et al. Absolute radiometric calibration of Beijing-1 Microsatellite Sensors[C]// The 8th Imaging Spectroscopy Technology and Application Seminar and Interdisciplinary Forum , 2010: 8-13. ] | |
[25] | 韩杰, 刘小玉, 李慧娜, 等. 基于6S和FLAASH的Landsat8卫星影像大气校正精度对比研究[J]. 许昌学院学报, 2019,38(5):49-53. |
[ Han J, Liu X Y, Li H N, et al. Comparison of atmospheric correction accuracy of Landsat8 satellite image based on 6S and FLAASH[J]. Journal of Xuchang University, 2019,38(5):49-53. ] | |
[26] | Jensen J R. 遥感数字影像处理导论(第3版)[M]. 北京: 科学出版社, 2010. |
[ Jensen J R. Introductory digital image processing a remote sensing perspective Third edition[M]. Beijing: Science Press, 2010. ] | |
[27] | 王增林, 朱大明. 基于遥感影像的最大似然分类算法的探讨[J]. 河南科学, 2010,28(11):1458-1461. |
[ Wang Z L, Zhu D M. A study of maximum likelihood classification algorithm based on remote sensing image[J]. Henan Science, 2010,28(11):1458-1461. ] | |
[28] |
Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans Neural Netw, 1999,10(5):988-999.
doi: 10.1109/72.788640 pmid: 18252602 |
[29] | Roli F, Fumera G. Support vector machines for remote sensing image classification[A]. Image & Signal Processing for Remote Sensing VI, 2001. |
[30] | 黄奇瑞. 基于粗糙集理论和SVM分类算法的遥感影像分类[D]. 昆明:昆明理工大学, 2012. |
[ Huang Q R. RS image classification based on Rough Sets Theory and SVM Classification algorithm[D]. Kunming: Kunming University of Science and Technology, 2012. ] | |
[31] | Li M, Zhou X, Wang X, et al. Genetic algorithm optimized SVM in object-based classification of quickbird imagery[A]. IEEE International Conference on Spatial Data Mining & Geographical Knowledge Services, 2011:348-352. |
[32] | 樊彦丽. 基于多特征的SVM高分辨率遥感影像分类研究[D]. 北京:中国地质大学(北京), 2018. |
[ Fan Y L. Study of high spatial resolution remote sensing image classification based on SVM with multi-features[D]. Beijing: China University of Geosciences (Beijing), 2018. ] | |
[33] | 彭中, 阿如旱, 范田芳. 基于决策树分类算法的遥感影像土地利用分类[J]. 阴山学刊(自然科学版), 2018,32(2):99-103. |
[ Peng Z, A R H, Fan T F. Land classification of remote sensing image based on decision tree classification algorithm[J]. Yinshan Academic Journal (Natural Science Edition), 2018,32(2):99-103. ] | |
[34] | 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019,31(3):157-165. |
[ Wang D Z, Wang S M, Huang C. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land and Resources, 2019,31(3):157-165. ] | |
[35] | 许文宁, 王鹏新, 韩萍, 等. Kappa系数在干旱预测模型精度评价中的应用——以关中平原的干旱预测为例[J]. 自然灾害学报, 2011,20(6):81-86. |
[ Xu W N, Wang P X, Han P, et al. Application of Kappa coefficient to accuracy assessments of drought forecasting model: A case study of Guanzhong Plain[J]. Journal of Natural Disasters, 2011,20(6):81-86. ] | |
[36] | 孙琳, 宋爱红, 高文秀. 基于最大似然法和SVM法的太湖流域HJ-1B影像分类[J]. 测绘地理信息, 2012,37(3):30-33. |
[ Sun L, Song A H, Gao W X. Land use/cover classification in Taihu Lake basin with HJ-1B images: Comparing maximum likelihood classification and support vector machine methods[J]. Journal of Geomatics, 2012,37(3):30-33. ] | |
[37] | 王展青, 王传廷, 张富铭, 等. 基于有效候选集的支持向量机样本选择方法[J]. 计算机工程与应用, 2008,44(23):214-216. |
[ Wang Z Q, Wang C Y, Zhang F M, et al. Sample selection for support vector machines based on effective candidate set[J]. Computer Engineering and Applications, 2008,44(23):214-216. ] | |
[38] | 潘洪涛, 王轩, 王晓飞. 训练样本对农作物遥感分类的精度影响研究[J]. 红外与激光工程, 2017,46(S1):149-156. |
[ Pan H T, Wang X, Wang X F. Study on the effect of training samples on the accuracy of crop remote sensing classification[J]. Infrared and Laser Engineering, 2017,46(S1):149-156. ] | |
[39] | 吴振彪, 沈德才, 黄练忠, 等. 训练样本数量对最大似然监督分类精度影响的研究[J]. 林业勘查设计, 2018(2):115-117. |
[ Wu Z B, Shen D C, Huang L Z, et al. Study on the effect of the number of training samples on the accuracy of maximum likelihood supervision classification[J]. Forest Investigation Design, 2018(2):115-117. ] |
[1] | 廖心治, 王华, 赵万民. 融合地图数据的山地城市医疗设施服务覆盖评估方法研究[J]. 地球信息科学学报, 2021, 23(4): 604-616. |
[2] | 黄康, 戴文远, 黄万里, 欧惠. 基于FLUS模型与动能定理的城镇用地增长边界划定[J]. 地球信息科学学报, 2020, 22(3): 557-567. |
[3] | 胡最, 王慧. 多因素约束的城市空间扩张元胞自动机构建及其应用研究[J]. 地球信息科学学报, 2020, 22(3): 616-627. |
[4] | 李培林, 刘小平, 黄应淮, 张鸿辉. 基于GEE平台的广州市主城区不透水面时间序列提取[J]. 地球信息科学学报, 2020, 22(3): 638-648. |
[5] | 王志远, 张考, 丁志鹏, 伍随意, 黄春华. 纳入动态数据的改进FLUS模型在城市增长边界划定中的应用[J]. 地球信息科学学报, 2020, 22(12): 2326-2337. |
[6] | 何红术, 黄晓霞, 李红旮, 倪凌佳, 王新歌, 陈崇, 柳泽. 基于改进U-Net网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10): 2010-2022. |
[7] | 方莉娜, 黄志文, 罗海峰, 陈崇成. 结合SVM与图匹配的车载激光点云道路标线识别[J]. 地球信息科学学报, 2019, 21(7): 994-1008. |
[8] | 李玉, 杨蕴, 赵泉华. 结合改进的降斑各向异性扩散和最大类间方差的SAR图像水体提取[J]. 地球信息科学学报, 2019, 21(6): 907-917. |
[9] | 李健锋, 叶虎平, 张宗科, 孔金玲, 魏显虎, Somasundaram Deepakrishna, 王法溧. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 781-788. |
[10] | 孙立, 王中辉, 孙立坚, 徐智邦, 朱钰, 王镕. 城市派出所空间位置优化及警力分配[J]. 地球信息科学学报, 2019, 21(3): 346-358. |
[11] | 杨浩, 孟娜, 王婧, 郑燕, 赵莉. 基于支持向量机的京津冀城市群热环境时空形态模拟[J]. 地球信息科学学报, 2019, 21(2): 190-200. |
[12] | 周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019, 21(11): 1768-1778. |
[13] | 文聪聪, 彭玲, 杨丽娜, 池天河. 主题模型与SVM组合的小尺度街区用地分类方法[J]. 地球信息科学学报, 2018, 20(2): 167-175. |
[14] | 陆军辉, 梅志雄, 赵书芳, 肖艳云. 土地利用配置的混沌蚁群优化算法研究[J]. 地球信息科学学报, 2017, 19(8): 1026-1035. |
[15] | 汤冬梅, 樊辉, 张瑶. Landsat时序变化检测综述[J]. 地球信息科学学报, 2017, 19(8): 1069-1079. |
|