地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (5): 869-881.doi: 10.12082/dqxxkx.2021.200396
杨帅1(), 杨娜2, 陈传法1,*(
), 常兵涛1, 高原1, 郑婷婷1
收稿日期:
2020-07-25
修回日期:
2020-12-26
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
*陈传法(1982— ),男,山东沂源人,教授,主要从事数字地形建模及空间数据质量改善等研究。 E-mail:chencf@sdust.edu.cn作者简介:
杨 帅(1993— ),男,山东临沂人,硕士生,主要从事空间数据质量改善方面的研究。E-mail:shuai_yang0209@163.com
基金资助:
YANG Shuai1(), YANG Na2, CHEN Chuanfa1,*(
), CHANG Bingtao1, GAO Yuan1, ZHENG Tingting1
Received:
2020-07-25
Revised:
2020-12-26
Online:
2021-05-25
Published:
2021-07-25
Contact:
CHEN Chuanfa
Supported by:
摘要:
目前,ICESat/GLAS是大尺度SRTM DEM精度评价的主要数据源。然而,现有的精度评价方法均忽略了2组数据的有效配准。为此,本文分析了数据配准前、后SRTM DEM整体精度差异,以及不同地形因子和土地利用类型对SRTM DEM影响程度。在此基础上,充分考虑SRTM DEM精度影响因素,分别借助多元线性回归(MLR)、后向传播神经网络(BPNN)、广义回归神经网络(GRNN)以及随机森林(RF)对SRTM DEM修正。结果分析表明:配准前,ICESat/GLAS与SRTM DEM沿x、y方向的平均水平位移分别为-17.588 m、-29.343 m,高程方向系统偏差为-2.107 m;配准后,SRTM DEM的系统误差基本消除,而且中误差降低了14.4%。配准前,坡向与SRTM DEM误差呈正弦函数关系,配准后这种关系基本消失。SRTM DEM误差均随地形起伏度、坡度、高程的增加呈增大趋势; 6种土地利用类型中,SRTM DEM在林地误差最大,未利用土地误差最小。对配准后SRTM DEM修正表明,RF效果最优,其中误差分别比MLR、BPNN、GRNN降低了3.1%、2.7%、11.3%。
杨帅, 杨娜, 陈传法, 常兵涛, 高原, 郑婷婷. 顾及数据配准的江西省SRTM DEM精度评价和修正[J]. 地球信息科学学报, 2021, 23(5): 869-881.DOI:10.12082/dqxxkx.2021.200396
YANG Shuai, YANG Na, CHEN Chuanfa, CHANG Bingtao, GAO Yuan, ZHENG Tingting. Accuracy Assessment and Improvement of SRTM DEM based on ICESat/GLAS under the Consideration of Data Coregistration over Jiangxi Province[J]. Journal of Geo-information Science, 2021, 23(5): 869-881.DOI:10.12082/dqxxkx.2021.200396
表2
SRTM DEM坡度分带精度统计
坡度/° | 点数/个 | ME | MAE | RMSE | |||||
---|---|---|---|---|---|---|---|---|---|
配准前 | 配准后 | 配准前 | 配准后 | 配准前 | 配准后 | ||||
0~5 | 16 415 | -1.681 | 0.369 | 3.802 | 3.204 | 5.589 | 5.013 | ||
5~10 | 6962 | -2.153 | -0.253 | 9.966 | 8.820 | 12.463 | 11.104 | ||
10~15 | 5148 | -2.632 | -0.802 | 12.410 | 10.570 | 15.332 | 13.104 | ||
15~20 | 3229 | -2.653 | -0.372 | 13.924 | 11.386 | 17.135 | 14.143 | ||
>20 | 2565 | -2.597 | -0.394 | 16.031 | 12.925 | 19.528 | 15.825 |
表3
SRTM DEM地形起伏度分带精度统计
地形起伏度/° | 点数/个 | ME | MAE | RMSE | |||||
---|---|---|---|---|---|---|---|---|---|
配准前 | 配准后 | 配准前 | 配准后 | 配准前 | 配准后 | ||||
0~100 | 14 222 | -1.692 | 0.371 | 3.671 | 3.043 | 5.525 | 4.826 | ||
100~200 | 7744 | -1.970 | -0.005 | 9.312 | 8.116 | 12.158 | 10.627 | ||
200~300 | 5846 | -2.750 | -0.753 | 11.684 | 10.044 | 14.728 | 12.677 | ||
300~400 | 3298 | -2.352 | -0.289 | 12.822 | 10.829 | 15.944 | 13.578 | ||
>400 | 3188 | -2.574 | -0.607 | 14.606 | 12.004 | 18.053 | 14.826 |
表4
SRTM DEM高程分带精度统计
高程/m | 点数/个 | ME | MAE | RMSE | |||||
---|---|---|---|---|---|---|---|---|---|
配准前 | 配准后 | 配准前 | 配准后 | 配准前 | 配准后 | ||||
0~100 | 13 361 | -1.804 | -0.182 | 3.632 | 2.995 | 5.611 | 4.907 | ||
100~200 | 7147 | -2.221 | -0.299 | 8.937 | 7.817 | 11.859 | 10.375 | ||
200~300 | 5044 | -2.517 | -0.522 | 11.228 | 9.740 | 14.351 | 12.472 | ||
300~400 | 3548 | -1.574 | -0.316 | 12.097 | 10.420 | 15.150 | 13.002 | ||
>400 | 5231 | -2.543 | -0.184 | 13.352 | 11.165 | 16.660 | 13.880 |
[1] | 卢丽君, 张继贤, 王腾. 一种基于高分辨率雷达影像以及外部DEM辅助的复杂地形制图方法[J]. 测绘学报, 2011,40(4):61-65. |
[ Lu L J, Zhang J X, Wang T. A DEM mapping method assisted by external DEM with high resolution InSAR data in complex terrain area[J]. Acta Geodaetica et Cartographica Sinica, 2011,40(4):61-65. | |
[2] |
Hirt C, Claessens S, Fecher T, et al. New ultrahigh-resolution picture of earth's gravity field[J]. Geophysical Research Letters, 2013,40(16):4279-4283.
doi: 10.1002/grl.50838 |
[3] |
Chen C, Liu F, Li Y, et al. A robust interpolation method for constructing digital elevation models from remote sensing data[J]. Geomorphology, 2016,268(sep.1):275-287.
doi: 10.1016/j.geomorph.2016.06.025 |
[4] | 闫业超, 张树文, 岳书平. 东北川岗地形区SRTM数据质量评价[J]. 中国科学院大学学报, 2008,25(1):41-46. |
[ An Y C, Zhang S W, Yue S P. Elevation of SRTM data quality in area of undulating hills of noreast China[J]. Jounral of the Graduate School of Chinese Academey of Sciences, 2008,25(1):41-46. | |
[5] |
Chaieb A, Rebai N, Bouaziz S. Vertical accuracy assessment of SRTM ver 4.1 and ASTER GDEM ver2 using GPS measurements in central west of Tunisia[J]. Journal of Geographic Information System, 2016,8(1):57-64.
doi: 10.4236/jgis.2016.81006 |
[6] | 杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学, 2013,38(4):887-897. |
[ Du X P, Guo H D, Fan X T, et al. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS[J]. Earth Science, 2013,38(4):887-897. ] | |
[7] |
Gorokhovich Y, Voustianiouk A. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics[J]. Remote Sensing of Environment, 2006,104(4):409-415.
doi: 10.1016/j.rse.2006.05.012 |
[8] | 李鹏, 李振洪, 施闯, 等. 中国地区30 m分辨率SRTM质量评估[J]. 测绘通报, 2016(9):24-28. |
[ Li P, Li Z H, Shi C, et al. Quality evaluation of 1 arc second version SRTM DEM in China[J]. Bulletin of Surveying and Mapping, 2016(9):24-28. ] | |
[9] |
Zhao X Q, Su Y J, Hu T, et al. A global corrected SRTM DEM product for vegetated areas[J]. Remote Sensing Letters, 2018,9(4):393-402.
doi: 10.1080/2150704X.2018.1425560 |
[10] | Huber M, Wessel B, Kosmann D, et al. Ensuring globally the TanDEM-X height accuracy: Analysis of the reference data sets ICESat, SRTM and KGPS-tracks[C]. Geoscience & Remote Sensing Symposium. IEEE, 2009,2: II-769-II-772. |
[11] |
Niel T G V, Mcvicar T R, Li L T, et al. The impact of misregistration on SRTM and DEM image differences[J]. Remote Sensing of Environment, 2008,112(5):2430-2442.
doi: 10.1016/j.rse.2007.11.003 |
[12] |
Su Y, Guo Q, Qin M, et al. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. Remote Sensing, 2015,7(9):11202-11225.
doi: 10.3390/rs70911202 |
[13] |
Baugh C A, Bates P D, Schumann G, et al. SRTM vegetation removal and hydrodynamic modeling accuracy[J]. Water Resources Research, 2013,49(9):5276-5289.
doi: 10.1002/wrcr.20412 |
[14] |
Yue L, Shen H, Zhang L, et al. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,123(1):20-34.
doi: 10.1016/j.isprsjprs.2016.11.002 |
[15] |
Wendi D, Liong S, Sun Y, et al. An innovative approach to improve SRTM DEM using multispectral imagery and artificial neural network[J]. Journal of Advances in Modeling Earth Systems, 2016,8(2):691-702.
doi: 10.1002/2015MS000536 |
[16] |
秦臣臣, 陈传法, 杨娜, 等. 基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2020,22(3):351-360.
doi: 10.12082/dqxxkx.2020.190411 |
[ Qin C C, Chen C F, Yang N, et al. Elevation accuracy evaluation and correction of SRTM and ASTER GDEM in Shandong Province based on ICESat/GLAS[J]. Journal of Geo-information Science, 2020,22(3):351-360. ] | |
[17] |
Zhao S M, Wang L, Cheng W M, et al. Rectification methods comparison for the ASTER GDEM V2 data using the ICESat/GLA14 data in the Lvliang mountains, China[J]. Environmental Earth Sciences, 2015,74(8):6571-6590.
doi: 10.1007/s12665-015-4614-1 |
[18] | 沈焕锋, 刘露, 岳林蔚, 等. 多源DEM融合的高差拟合神经网络方法[J]. 测绘学报, 2018,47(6):854-863. |
[ Shen H F, Liu L, Yue L W, et al. A multi-source DEM fusion method based on elevation difference fitting neural network[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(6):854-863. ] | |
[19] |
Yamazaki D, Ikeshima D, Tawatari R, et al. A high accuracy map of global terrain elevations[J]. Geophysical Research Letters, 2017,44(11):5844-5853.
doi: 10.1002/2017GL072874 |
[20] |
Farr T G, Kobrick M. Shuttle radar topography mission produces a wealth of data[J]. Eos, Transactions American Geophysical Union, 2000,81(48):583-585.
doi: 10.1029/EO081i048p00583 |
[21] | Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007,45(2):RG2004. |
[22] |
Wang X, Gong P, Zhao Y, et al. Water-level changes in China's large lakes determined from ICESat/GLAS data[J]. Remote Sensing of Environment, 2013,132:131-144.
doi: 10.1016/j.rse.2013.01.005 |
[23] | Carabajal C C, Harding D J. ICESat validation of SRTM C-band digital elevation models[J]. Geophysical Research Letters, 2005,32(22):L22S01. |
[24] | Neuenschwander A L, Urban T J, Gutierrez R, et al. Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping[J]. Journal of Geophysical Research: Biogeosciences, 2008,113(G2):G02S03. |
[25] | Fricker H A. Assessment of ICESat performance at the salar de Uyuni, Bolivia[J]. Geophysical Research Letters, 2005,32(21):L21S06. |
[26] |
Liu J, Liu M, Tian H, et al. Spatial and temporal patterns of China's cropland during 1990-2000: An analysis based on Landsat TM data[J]. Remote Sensing of Environment, 2005,98(4):442-456.
doi: 10.1016/j.rse.2005.08.012 |
[27] | 王显威, 程晓, 黄华兵, 等. 结合GPS和GLAS数据生成Dome-A区域DEM[J]. 遥感学报, 2013,17(2):209-221. |
[ Wang X W, Cheng X, Huang H B, et al. DEM production for Dome-A combining GPS and GLAS data. Journal of Remote Sensing, 2013,17(2):209-221. ] | |
[28] | Hossein A, Peter R. Accuracy enhancement of ASTER global digital elevation models using ICESat Data[J]. Remote Sensing, 2011(7):1323-1343. |
[29] |
Huang X D, Xie H J, Liang T G, et al. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau[J]. International Journal of Remote Sensing, 2011,32(18):5177-5196.
doi: 10.1080/01431161.2010.495092 |
[30] |
Nuth C, Kaab A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011,5(1):271-290.
doi: 10.5194/tc-5-271-2011 |
[31] |
Fisher P F, Tate N J. Causes and consequences of error in digital elevation models[J]. Progress in Physical Geography: Earth and Environment, 2016,30(4):467-489.
doi: 10.1191/0309133306pp492ra |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 谢静, 陈楠, 林偲蔚. 基于地形音乐的地形定量分析与空间分异研究—以陕北黄土高原为例[J]. 地球信息科学学报, 2023, 25(5): 924-934. |
[3] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[4] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[5] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[6] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[7] | 贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. |
[8] | 焦怀瑾, 陈崇成, 黄洪宇. 结合ICESat-2和GEDI的中国东南丘陵地区ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2023, 25(2): 409-420. |
[9] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[10] | 师长兴. 地形扫描数据TIN模型生成DEM的误差计算方法[J]. 地球信息科学学报, 2023, 25(1): 40-48. |
[11] | 伍跃飞, 李建微, 毕胜, 朱馨, 王前锋. 面向山地徒步应急救援路径规划的改进蚁群算法研究[J]. 地球信息科学学报, 2023, 25(1): 90-101. |
[12] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[13] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[14] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[15] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
|