地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (5): 773-784.doi: 10.12082/dqxxkx.2021.200709
戴激光1,2(), 王晓桐1,2,*(
), 智新宇1,2, 马榕辰1,2, 张依蕾1,2
收稿日期:
2020-11-23
修回日期:
2021-01-26
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
*王晓桐(1995— ),女,辽宁营口人,硕士生,主要研究方向为道路信息提取。E-mail:wgxiaotg@163.com作者简介:
戴激光(1978— ),男,黑龙江双鸭山人,博士,副教授,主要研究方向为遥感影像信息提取。E-mail:daijg03@163.com
基金资助:
DAI Jiguang1,2(), WANG Xiaotong1,2,*(
), ZHI Xinyu1,2, MA Rongchen1,2, ZHANG Yilei1,2
Received:
2020-11-23
Revised:
2021-01-26
Online:
2021-05-25
Published:
2021-07-25
Contact:
WANG Xiaotong
Supported by:
摘要:
宽度窄、路面材质与农田差异性低是农村机耕路的特点,也是导致现有模板匹配方法自动化程度低的主要因素。本文针对这一问题,提出动态权重约束下的农村机耕路提取方法。该方法首先通过改进多尺度线段方向直方图(Multi-Scale Line Segment Orientation Histogram, MLSOH)模型,对机耕路局部道路方向进行预测,能够降低由于田埂干扰所导致的道路方向错误预测几率;其次为明确表征机耕路线性特征,对影像进行线段提取。并将局部区域线段长度作为权重动态分配的主要因子,对不同道路预测方向进行动态权重分配,以此解决路面宽度窄导致的匹配准确度下降问题。最后,将HSL色彩空间相似性分析模型与动态权重因子进行结合,构成HSL动态匹配模型,以此提高机耕路与农田之间的对比性。本文以3幅不同地区、不同类型的高分辨率影像为实验数据,与其他多个模板匹配算法进行对比分析,结果表明,本文方法道路提取的完整度、正确率以及质量均在95%以上。同时相对于其他方法,在保证机耕路提取精度的基础上,本文提出的方法具有自动化程度高的优点,并且本文的方法也适用于其他农村区域道路。
戴激光, 王晓桐, 智新宇, 马榕辰, 张依蕾. 动态权重约束下的农村机耕路提取方法[J]. 地球信息科学学报, 2021, 23(5): 773-784.DOI:10.12082/dqxxkx.2021.200709
DAI Jiguang, WANG Xiaotong, ZHI Xinyu, MA Rongchen, ZHANG Yilei. An Extraction Method of Rural Mechanically Cultivated Road Under Dynamic Weight Constraint[J]. Journal of Geo-information Science, 2021, 23(5): 773-784.DOI:10.12082/dqxxkx.2021.200709
表1
不同道路提取方法的精度对比
不同实验 | 评价参数 | |||||
---|---|---|---|---|---|---|
完整度/% | 正确率/% | 提取质量/% | 种子点数/个 | 时间/s | ||
实验1 | 论文方法 | 98.6 | 99.5 | 97.5 | 14 | 44 |
扇形描述子 | 98.3 | 99.4 | 97.1 | 52 | 187 | |
圆形模板 | 98.1 | 98.8 | 97.1 | 42 | 178 | |
T型模板 | 97.3 | 98.2 | 96.7 | 176 | 866 | |
矩形模板 | 98.7 | 96.6 | 93.7 | 422 | 1478 | |
实验2 | 论文方法 | 99.6 | 98.9 | 97.2 | 21 | 74 |
扇形描述子 | 96.7 | 97.7 | 94.7 | 36 | 153 | |
圆形模板 | 97.4 | 98.5 | 96.0 | 70 | 255 | |
T型模板 | 98.6 | 98.5 | 97.6 | 330 | 1482 | |
矩形模板 | 96.6 | 97.0 | 91.8 | 280 | 1088 | |
实验3 | 论文方法 | 98.3 | 99.4 | 97.7 | 65 | 235 |
扇形描述子 | 97.2 | 98.8 | 96.2 | 232 | 932 | |
圆形模板 | 97.1 | 99.0 | 96.2 | 292 | 1170 | |
T型模板 | 97.2 | 96.5 | 94.1 | 646 | 2583 | |
矩形模板 | 96.0 | 97.9 | 94.1 | 930 | 3769 |
[1] | 戴激光, 王杨, 杜阳, 等. 光学遥感影像道路提取的方法综述[J]. 遥感学报, 2020,24(7):804-823. |
[ Dai J G, Wang Y, Du Y, et al. Development and prospect of road extraction method for optical remote sensing image[J]. Journal of Remote Sensing, 2020,24(7):804-823. ] | |
[2] |
Saito S, Yamashita T, Aoki Y. Multiple object extraction from aerial imagery with convolutional neural networks[J]. Journal of Imaging Science and Technology, 2016,60(1):104021-104029.
doi: 10.2352/J.ImagingSci.Technol.2016.60.1.010402 |
[3] |
Cheng G L, Wang Y, Xu S B, et al. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):3322-3337.
doi: 10.1109/TGRS.2017.2669341 |
[4] |
Wei Y N, Wang Z L, Xu M. Road structure refined CNN for road extraction in aerial image[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):709-713.
doi: 10.1109/LGRS.2017.2672734 |
[5] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717 |
[6] |
Panboonyuen T, Jitkajornwanich K, Lawawirojwong S, et al. Road segmentation of remotely-sensed images using deep convolutional neural networks with landscape metrics and conditional random fields[J]. Remote Sensing, 2017,9(7):680.
doi: 10.3390/rs9070680 |
[7] | Lin G S, Milan A, Shen C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 5168-5177. |
[8] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778. |
[9] |
Gao L, Song W D, Dai J G, et al. Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network[J]. Remote Sensing, 2019,11(5):552.
doi: 10.3390/rs11050552 |
[10] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 |
[11] |
Teerapong P, Kulsawasd J, Slam L, et al. Road segmentation of remotely-sensed images using deep convolutional neural networks with landscape metrics and conditional random fields[J]. Remote Sensing, 2017,9(7):680-699.
doi: 10.3390/rs9070680 |
[12] |
Yin D D, Du S H, Wang S W, et al. A direction-guided ant colony optimization method for extraction of urban road information from very-high-resolution images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,8(10):4785-4794.
doi: 10.1109/JSTARS.2015.2477097 |
[13] | Herumurti D, Uchimura K, Koutaki G, et al. Urban road network extraction based on zebra crossing detection from a very high resolution RGB aerial image and DSM data[C]// 2013 International Conference on Signal-Image Technology & Internet-Based Systems. IEEE, 2013: 79-84. |
[14] | Yi W B, Chen Y H, Tang H, et al. Experimental research on urban road extraction from high-resolution RS images using Probabilistic Topic Models[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010: 445-448. |
[15] |
Blaschke T, Hay G J, Kelly M, et al. Geographic object-based image analysis-towards a new paradigm[J]. ISPRS J Photogramm Remote Sens, 2014,87(100):180-191.
doi: 10.1016/j.isprsjprs.2013.09.014 |
[16] |
Maboudi M, Amini J, Hahn M, et al. Object-based road extraction from satellite images using ant colony optimization[J]. International Journal of Remote Sensing, 2017,38(1):179-198.
doi: 10.1080/01431161.2016.1264026 |
[17] | 林祥国, 张继贤, 李海涛, 等. 基于T型模板匹配半自动提取高分辨率遥感影像带状道路[J]. 武汉大学学报·信息科学版, 2009,34(3):293-296. |
[ Lin X G, Zhang J X, Li H T, et al. Semi-automatic extraction of ribbon road from high resolution remotely sensed imagery by a T-shaped template matching[J]. Geomatics and Information Science of Wuhan University, 2009,34(3):293-296. ] | |
[18] |
Leninisha S, Vani K. Water flow based geometric active deformable model for road network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,102:140-147.
doi: 10.1016/j.isprsjprs.2015.01.013 |
[19] | 孙晨阳, 周廷刚, 陈圣波, 等. 基于矩形模板匹配的线状地物半自动提取方法研究[J]. 西南大学学报(自然科学版), 2015(7):155-160. |
[ Sun C Y, Zhou T G, Chen S B, et al. Research of a semi-automatic extraction method for linear features based on rectangular template matching[J]. Journal of Southwest Agricultural University, 2015(7):155-160. ] | |
[20] | 连仁包, 王卫星, 李娟. 自适应圆形模板及显著图的高分辨遥感图像道路提取[J]. 测绘学报, 2018,47(7):950-958. |
[ Lian R B, Wang W X, Li J. Road extraction from high-resolution remote sensing images based on adaptive circular template and saliency map[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(7):950-958. ] | |
[21] |
Dai J G, Zhu T T, Zhang Y L, et al. Lane-level road extraction from high-resolution optical satellite images[J]. Remote Sensing, 2019,11(22):2672.
doi: 10.3390/rs11222672 |
[22] |
Dai J G, Zhu T T, Wang Y, et al. Road extraction from high-resolution satellite images based on multiple descriptors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,13:227-240.
doi: 10.1109/JSTARS.4609443 |
[23] | 丁磊, 张保明, 郭海涛, 等. 矢量数据辅助的高分辨率遥感影像道路自动提取[J]. 遥感学报, 2017,21(1):84-95. |
[ Ding L, Zhang B M, Guo H T, et al. Automatic road extraction from high-resolution remote sensing images assisted by vector data[J]. Journal of Remote Sensing, 2017,21(1):84-95. ] | |
[24] | 柴文胜. 农村机耕道路建设的调查及建议[J]. 湖北农机化, 2017(4):43-44. |
[ Chai W S. Investigation and suggestion on construction of rural mechanized farming road[J]. Hubei Agricultural Mechanization, 2017(4):43-44. ] | |
[25] | 戴激光, 朱婷婷, 张依蕾, 等. 高分辨率光学卫星影像线段融合方法[J]. 测绘学报, 2020,49(4):489-498. |
[ Dai J G, Zhu T T, Zhang Y L, et al. Line segment fusion method of high resolution optical satellite image[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(4):489-498. ] | |
[26] | Hearn D, Baker M P, Carithers W. Computer graphics with open GL[M]. United States: Prentice Hall, 2003. |
[27] | Gonzalez R C, Woods R E. Digital image processing[M]. Beijing: Publishing House of Electronics Industry, 2002: 295. |
[28] | Wiedemann C, Ebner H. Automatic completion and evaluation of road networks[J]. International Archives of Photogrammetry and Remote Sensing. 2000,33:979-986. |
[1] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[2] | 刘洋, 康健, 管海燕, 汪汉云. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25(2): 396-408. |
[3] | 陈振, 陈芸芝, 吴婷, 李佳优. 面向高分遥感影像道路提取的轻量级双注意力和特征补偿残差网络模型[J]. 地球信息科学学报, 2022, 24(5): 949-961. |
[4] | 焦洋洋, 刘平芝, 刘爱龙, 刘松林. AlexNet支持下的地图建筑物形状分类方法[J]. 地球信息科学学报, 2022, 24(12): 2333-2341. |
[5] | 何惠馨, 范俊甫, 陈文贺, 周玉科, 张鹏, 俞宵. 基于亮度补偿的遥感影像阴影遮挡道路提取方法[J]. 地球信息科学学报, 2020, 22(2): 258-267. |
[6] | 张明祥, 王泽根, 白茹月, 贾鸿顺. 一种由粗到精的光学与SAR遥感图像配准算法[J]. 地球信息科学学报, 2020, 22(11): 2238-2246. |
[7] | 袁鹏飞, 黄荣刚, 胡平波, 杨必胜. 基于多光谱LiDAR数据的道路中心线提取[J]. 地球信息科学学报, 2018, 20(4): 452-461. |
[8] | 熊伟成, 杨必胜, 董震. 面向车载激光扫描数据的道路目标精细化鲁棒提取[J]. 地球信息科学学报, 2016, 18(3): 376-385. |
|