地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (3): 508-521.doi: 10.12082/dqxxkx.2022.210237
收稿日期:
2021-04-29
修回日期:
2021-07-05
出版日期:
2022-03-25
发布日期:
2022-05-25
通讯作者:
*范红梅(1997— ),女,湖北咸宁人,硕士生,主要从事遥感图像处理,变化检测研究。E-mail: fanhm@ctgu.edu.cn作者简介:
邵 攀(1985— ),男,河南安阳人,博士,副教授,主要从事遥感图像处理,人工智能,信息融合研究。E-mail: panshao@whu.edu.cn
基金资助:
SHAO Pan1,2(), FAN Hongmei1,2,*(
), GAO Ziang1,2
Received:
2021-04-29
Revised:
2021-07-05
Online:
2022-03-25
Published:
2022-05-25
Contact:
FAN Hongmei
Supported by:
摘要:
遥感变化检测是开展对地观测应用的关键技术之一,在城市研究、灾害评估以及资源调查等领域发挥着重要的作用。本文针对基于差分影像的遥感变化检测展开研究,提出一种基于自适应半监督模糊C均值(Adaptive and Semi-Supervised Fuzzy C-means, ASFCM)聚类的变化检测技术。① ASFCM根据“差分影像像素灰度值越大,则对应区域发生变化可能性越大”的性质,通过阈值技术自适应、自动地分析差分影像灰度直方图并将其划分为两部分:几乎可确定类别区域和不确定区域;② 将差分影像像素灰度值、空间上下文信息和几乎可确定类别区域像素的伪类别标签信息集成到模糊聚类过程,生成差分影像的模糊隶属度函数;③ 通过最大隶属度原则生成变化检测图。ASFCM通过半监督策略利用伪类别标签信息指导聚类过程,通过空间引力模型优化的模糊因子自适应地利用差分影像的空间相关性,能够得到更加准确的模糊隶属度函数和更优的变化检测结果。3组真实遥感数据的实验结果验证了ASFCM的有效性:ASFCM在Bangladesh数据上的kappa系数为0.9188,比其它方法提高3.5%~16.4%;在Madeirinha数据上的Kappa系数为0.9379,比其他方法提高2.18%~7.13%;在黑龙江数据上的Kappa系数为0.8696,比其它方法提高2.88%~22.02%。
邵攀, 范红梅, 高梓昂. 基于自适应半监督模糊C均值的遥感变化检测[J]. 地球信息科学学报, 2022, 24(3): 508-521.DOI:10.12082/dqxxkx.2022.210237
SHAO Pan, FAN Hongmei, GAO Ziang. An Adaptive and Semi-Supervised Fuzzy C-means Clustering Algorithm for Remotely Sensed Change Detection[J]. Journal of Geo-information Science, 2022, 24(3): 508-521.DOI:10.12082/dqxxkx.2022.210237
表1
Bangladesh数据变化检测图的定量指标
算法 | 虚检 | 虚检率 | 漏检 | 漏检率 | 整体错误 | 整体错误率 | Kappa系数 | 时间/s |
---|---|---|---|---|---|---|---|---|
FCM | 6 | 0.0001 | 4756 | 0.3558 | 4762 | 0.0529 | 0.7548 | 0.29 |
FLICM | 9 | 0.0001 | 4580 | 0.3427 | 4589 | 0.0510 | 0.7653 | 3.04 |
RFLICM | 16 | 0.0002 | 4497 | 0.3365 | 4513 | 0.0501 | 0.7699 | 2.05 |
AFLICM | 5 | 0.0001 | 4478 | 0.3350 | 4483 | 0.0498 | 0.7708 | 1.66 |
FatFLICM | 268 | 0.0035 | 2217 | 0.1659 | 2485 | 0.0276 | 0.8838 | 4.51 |
RSFCM | 11 | 0.0001 | 4140 | 0.3097 | 4151 | 0.0461 | 0.7910 | 1.36 |
CVA-IFCM | 673 | 0.0088 | 1904 | 0.1425 | 2577 | 0.0286 | 0.8823 | 6.49 |
CWNN | 21 | 0.0003 | 4076 | 0.3050 | 4097 | 0.0455 | 0.7942 | >450 |
ASFCM | 358 | 0.0047 | 1430 | 0.1070 | 1788 | 0.0199 | 0.9188 | 1.82 |
表2
Madeirinha数据变化检测图的定量指标
算法 | 虚检 | 虚检率 | 漏检 | 漏检率 | 整体错误 | 整体错误率 | Kappa系数 | 时间/s |
---|---|---|---|---|---|---|---|---|
FCM | 142 | 0.0009 | 6127 | 0.1959 | 6269 | 0.0335 | 0.8697 | 0.69 |
FLICM | 175 | 0.0011 | 6234 | 0.1993 | 6409 | 0.0343 | 0.8666 | 8.06 |
RFLICM | 193 | 0.0012 | 5884 | 0.1882 | 6077 | 0.0325 | 0.8742 | 4.55 |
AFLICM | 164 | 0.0011 | 5551 | 0.1775 | 5715 | 0.0306 | 0.8822 | 3.73 |
FatFLICM | 3944 | 0.0253 | 612 | 0.0196 | 4556 | 0.0244 | 0.9161 | 9.65 |
RSFCM | 178 | 0.0011 | 5463 | 0.1747 | 5641 | 0.0302 | 0.8839 | 3.16 |
CVA-IFCM | 1031 | 0.0066 | 4202 | 0.1344 | 5233 | 0.0280 | 0.8953 | 13.58 |
CWNN | 3208 | 0.0206 | 1419 | 0.0454 | 4627 | 0.0247 | 0.9132 | >500 |
ASFCM | 722 | 0.0046 | 2442 | 0.0781 | 3164 | 0.0169 | 0.9379 | 3.97 |
表3
黑龙江数据变化检测图的定量指标
算法 | 虚检 | 虚检率 | 漏检 | 漏检率 | 整体错误 | 整体错误率 | Kappa系数 | 时间/s |
---|---|---|---|---|---|---|---|---|
FCM | 6093 | 0.0042 | 49 366 | 0.2457 | 55 459 | 0.0336 | 0.8268 | 4.66 |
FLICM | 3358 | 0.0023 | 56 085 | 0.2792 | 59 443 | 0.0360 | 0.8101 | 89.66 |
RFLICM | 3899 | 0.0027 | 53 293 | 0.2653 | 57 192 | 0.0347 | 0.8187 | 82.43 |
AFLICM | 5923 | 0.0041 | 46 704 | 0.2325 | 52 627 | 0.0319 | 0.8366 | 36.63 |
FatFLICM | 527 | 0.0004 | 82 848 | 0.4124 | 83 375 | 0.0505 | 0.7131 | 95.38 |
RSFCM | 8171 | 0.0056 | 43 729 | 0.2177 | 51 900 | 0.0315 | 0.8408 | 42.50 |
CVA-IFCM | 37 778 | 0.0261 | 23 207 | 0.1155 | 60 985 | 0.0370 | 0.8324 | 121.75 |
CWNN | 137 700 | 0.0950 | 17 807 | 0.0886 | 155 507 | 0.0942 | 0.6494 | >2000 |
ASFCM | 16 088 | 0.0111 | 28 684 | 0.1428 | 44 772 | 0.0271 | 0.8696 | 47.81 |
表4
RSFCM、SSFCM和ASFCM在3组数据的变化检测精度指标
算法 | 虚检 | 虚检率 | 漏检 | 漏检率 | 整体错误 | 整体错误率 | Kappa系数 | |
---|---|---|---|---|---|---|---|---|
Bangladesh 数据 | RSFCM | 11 | 0.0001 | 4140 | 0.3097 | 4151 | 0.0461 | 0.7910 |
SSFCM | 106 | 0.0014 | 2579 | 0.1930 | 2685 | 0.0298 | 0.8723 | |
ASFCM | 358 | 0.0047 | 1430 | 0.1070 | 1788 | 0.0199 | 0.9188 | |
Madeirinha 数据 | RSFCM | 178 | 0.0011 | 5463 | 0.1747 | 5641 | 0.0302 | 0.8839 |
SSFCM | 1061 | 0.0068 | 3101 | 0.0992 | 4162 | 0.0223 | 0.9180 | |
ASFCM | 722 | 0.0046 | 2442 | 0.0781 | 3164 | 0.0169 | 0.9379 | |
黑龙江 数据 | RSFCM | 8171 | 0.0056 | 43 729 | 0.2177 | 51 900 | 0.0315 | 0.8408 |
SSFCM | 9243 | 0.0063 | 38 171 | 0.1900 | 47 314 | 0.0287 | 0.8570 | |
ASFCM | 16 088 | 0.0111 | 28 684 | 0.1428 | 44 772 | 0.0271 | 0.8696 |
[1] | 邵攀. 非监督遥感变化检测模糊方法研究[D]. 武汉:武汉大学, 2016. |
[ Shao P. Study on fuzzy unsupervised change detection methods based on remotely sensed image[D]. Wuhan: Wuhan University, 2016. ] | |
[2] | 公茂果, 苏临之, 李豪, 等. 合成孔径雷达影像变化检测研究进展[J]. 计算机研究与发展, 2016, 53(1):123-137. |
[ Gong M G, Su L Z, Li H, et al. Research progress of SAR image change detection[J]. Journal of Computer Research and Development, 2016, 53(1):123-137. ] DOI: 10.7544/issn1000-1239.2016.20150662 | |
[3] |
吴瑞娟, 何秀凤, 王静. 结合像元级与对象级的滨海湿地变化检测方法[J]. 地球信息科学学报, 2020, 22(10):2078-2087.
doi: 10.12082/dqxxkx.2020.190417 |
[ Wu R J, He X F, Wang J. Coastal wetlands change detection combining pixel-based and object-based methods[J]. Journal of Geo-information Science, 2020, 22(10):2078-2087. ] DOI: 10.12082/dqxxkx.2020.190417 | |
[4] |
Liu G, Gousseau Y, Tupin F. A Contrario comparison of local descriptors for change detection in very high spatial resolution satellite images of urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):3904-3918. DOI: 10.1109/TGRS.2018.2888985
doi: 10.1109/TGRS.36 |
[5] |
Gong M G, Zhou Z Q, Ma J J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing, 2012, 21(4):2141-2151.
doi: 10.1109/TIP.2011.2170702 |
[6] |
Patra S, Ghosh S, Ghosh A. Histogram thresholding for unsupervised change detection of remote sensing images[J]. International Journal of Remote Sensing, 2011, 32(21):6071-6089. DOI: 10.1080/01431161.2010.507793
doi: 10.1080/01431161.2010.507793 |
[7] |
Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182. DOI: 10.1109/36.843009
doi: 10.1109/36.843009 |
[8] |
Ghosh A, Mishra N S, Ghosh S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images[J]. Information Sciences, 2011, 181(4):699-715. DOI: 10.1016/j.ins.2010.10.016
doi: 10.1016/j.ins.2010.10.016 |
[9] |
Liu L Y, Jia Z H, Yang J E, et al. SAR image change detection based on mathematical morphology and the K-means clustering algorithm[J]. IEEE Access, 2019, 7:43970-43978. DOI: 10.1109/ACCESS.2019.2908282
doi: 10.1109/Access.6287639 |
[10] | Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Springer, Boston, MA, 1981. |
[11] | 王建明, 史文中, 邵攀. 自适应距离和模糊拓扑优化的模糊聚类SAR影像变化检测[J]. 测绘学报, 2018, 47(5):611-619. |
[ Wang J M, Shi W Z, Shao P. Fuzzy clustering SAR image change detection based on adaptive distance and fuzzy topology optimization[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):611-619. ] DOI: 10.11947/j.AGCS.2018.20160607 | |
[12] |
Gong M, Su L, Jia M, et al. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1):98-109. DOI: 10.1109/TFUZZ.2013.2249072
doi: 10.1109/TFUZZ.2013.2249072 |
[13] |
Hao M, Zhang H, Shi W, et al. Unsupervised change detection using fuzzy C-means and MRF from remotely sensed images[J]. Remote Sensing Letters, 2013, 4(12):1185-1194. DOI: 10.1109/ICAPR.2009.82
doi: 10.1080/2150704X.2013.858841 |
[14] |
Hao M, Hua Z, Li Z X, et al. Unsupervised change detection using a novel fuzzy c-means clustering simultaneously incorporating local and global information[J]. Multimedia Tools and Applications, 2017, 76(19):20081-20098. DOI: 10.1007/s11042-017-4354-1
doi: 10.1007/s11042-017-4354-1 |
[15] |
Shao P, Shi W Z, He P F, et al. Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm[J]. Remote Sensing, 2016, 8(3):264. DOI: 10.3390/rs8030264
doi: 10.3390/rs8030264 |
[16] |
Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199. DOI: 10.1109/42.996338
pmid: 11989844 |
[17] | Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(4):1907-1916. DOI: 10.1109/TSMCB.2004.831165 |
[18] |
Cai W L, Chen S C, Zhang D Q. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3):825-838. DOI: 10.1016/j.patcog.2006.07.011
doi: 10.1016/j.patcog.2006.07.011 |
[19] |
Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5):1328-1337. DOI: 10.1109/TIP.2010.2040763
doi: 10.1109/TIP.2010.2040763 pmid: 20089475 |
[20] |
Ma J, Gong M, Zhou Z. Wavelet fusion on ratio images for change detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6):1122-1126. DOI: 10.1109/LGRS.2012.2191387
doi: 10.1109/LGRS.2012.2191387 |
[21] |
Zhang H, Wang Q M, Shi W Z, et al. A novel adaptive fuzzy local information C-means clustering algorithm for remotely sensed imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5057-5068. DOI: 10.1109/TGRS.2017.2702061
doi: 10.1109/TGRS.2017.2702061 |
[22] | 季欣然, 黄亮, 陈朋弟. 结合变化向量分析和直觉模糊聚类的遥感影像变化检测方法[J]. 全球定位系统, 2020, 45(6):100-106. |
[ Ji X R, Huang L A, Chen P D. Change detection in remote sensing images combined with intuitionistic fuzzy clustering and change vector analysis[J]. GNSS World of China, 2020, 45(6):100-106. ] DOI: 10.13442/j.gnss.1008-9268.2020.06.015 | |
[23] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
doi: 10.1109/TSMC.1979.4310076 |
[24] |
Bovolo F, Bruzzone L, Marconcini M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2070-2082. DOI: 10.1109/TGRS.2008.916643
doi: 10.1109/TGRS.2008.916643 |
[25] |
Yetgin Z. Unsupervised change detection of satellite images using local gradual descent[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1919-1929. DOI: 10.1109/TGRS.2011.2168230
doi: 10.1109/TGRS.2011.2168230 |
[26] |
Gao F, Wang X A, Gao Y H, et al. Sea ice change detection in SAR images based on convolutional-wavelet neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1240-1244. DOI: 10.1109/LGRS.201 9.2895656
doi: 10.1109/LGRS.8859 |
[27] |
Mishra N S, Ghosh S, Ghosh A. Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images[J]. Applied Soft Computing, 2012, 12(8):2683-2692. DOI: 10.1016/j.asoc.2012.03.060
doi: 10.1016/j.asoc.2012.03.060 |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[3] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[4] | 高建文, 管海燕, 彭代锋, 许正森, 康健, 季雅婷, 翟若雪. 基于局部-全局语义特征增强的遥感影像变化检测网络模型[J]. 地球信息科学学报, 2023, 25(3): 625-637. |
[5] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[6] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[7] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[8] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[9] | 王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395. |
[10] | 甘聪聪, 邱炳文, 张建阳, 姚铖鑫, 叶智燕, 黄姮, 黄莹泽, 彭玉凤, 林艺真, 林多多, 苏中豪. 基于Sentinel-1/2动态耦合移栽期特征的水稻种植模式识别[J]. 地球信息科学学报, 2023, 25(1): 153-162. |
[11] | 华一新, 赵鑫科, 张江水. 地理信息系统研究新范式[J]. 地球信息科学学报, 2023, 25(1): 15-24. |
[12] | 骆钰波, 陈碧宇. 面向路网轨迹的自适应数据模型与索引结构[J]. 地球信息科学学报, 2023, 25(1): 63-76. |
[13] | 于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802. |
[14] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[15] | 吕爱锋, 亓珊珊. 遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J]. 地球信息科学学报, 2022, 24(9): 1817-1834. |
|